Pole Placement and Active Vibration Control in Aeroelasticity

John E Mottershead1, Yitshak Ram2, Shakir Jiffri1, Sabastiano Fichera1 and Xiaojun Wei1

1University of Liverpool UK
2Louisiana State University, Baton Rouge, USA

j.e.mottershead@liv.ac.uk
Contents

• Flutter control in aeroelastic systems
• Receptance method – LTI control based on measured vibration data
• Wind-tunnel aerofoil example
• Nonlinear aeroservoelasticity using feedback linearisation.
• Wind-tunnel example – nonlinear stiffness in plunge
• LCO suppression
• Feedback linearisation for non-smooth structural nonlinearity
• Numerical example – piecewise stiffness nonlinearity and freeplay
• MODFLEX wing
• Conclusions
Receptance Method

- Dynamic stiffnesses → Receptances:

\[s^2 M + sC + K \quad x \quad s = f \quad s \]

\[H(s) = (s^2 M + sC + K)^{-1} \]

- No need to evaluate or to know the system matrices \(M, C, K \).
- Any input-output transfer function may be used – dynamics of actuators, sensors, filters etc. included in the measurement.
Receptance Method
Partial Pole Placement Problem

Open–loop and closed-loop systems:

\[
\begin{align*}
\lambda_k^2M + \lambda_k C + K \ v_k &= 0 \\
\mu_k^2M + \mu_k C + K \ w_k &= Bu(t) \\
u(t) &= \mu_k F^T + G^T \ w_k
\end{align*}
\]

\[
k = 1, 2, \ldots, 2n
\]

Assigned eigenvalues \(\mu_k \) \(p \) are distinct from eigenvalues \(\lambda_k \) \(2n \).

While eigenvalues \(\mu_k = \lambda_k \) \(k = p + 1, p + 2, \ldots, 2n \) are unchanged.
Unchanged Eigenvalues

\[
\lambda_k^2 M + \lambda_k C + K \ w_k = B \ \lambda_k F^T + G^T \ w_k
\]

\[
B = \begin{bmatrix} b_1 & b_2 & \cdots & b_m \end{bmatrix} \quad F = \begin{bmatrix} f_1 & f_2 & \cdots & f_m \end{bmatrix} \quad G = \begin{bmatrix} g_1 & g_2 & \cdots & g_m \end{bmatrix}
\]

May be re-written as,

\[
\lambda_k^2 M + \mu_k C + K \ \tilde{w}_k = \phi_1 \lambda_k f_1^T + g_1^T + b_2 \lambda_k f_2^T + g_2^T + \cdots + b_m \lambda_k f_m^T + g_m^T \ \tilde{w}_k
\]

Non-trivial solution: \(w_k = v_k \)

\[
\phi_1 \lambda_k f_1^T + g_1^T + \cdots + b_m \lambda_k f_m^T + g_m^T \ v_k = 0 \quad k = p + 1, p + 2, \ldots, 2n
\]

\[
\begin{bmatrix}
\lambda_k v_k^T & 0 & \cdots & 0 & v_k^T & 0 & \cdots & 0 \\
0 & \lambda_k v_k^T & \cdots & 0 & 0 & v_k^T & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_k v_k^T & 0 & 0 & \cdots & v_k^T
\end{bmatrix}
\begin{bmatrix}
f_1 \\
\vdots \\
f_m \\
g_1 \\
\vdots \\
g_m
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]
Assigned Eigenvalues

\[w_k = H \xi_k \bigg(\mu_k f_1^T + g_1^T \bigg) + b_2 \xi_2 f_2^T + g_2^T + \ldots + b_m \xi_m f_m^T + g_m^T \bigg) w_k \quad k = 1, 2, \ldots, p \]

Let \[r_{\mu_k, j} = H \xi_k b_j \] and \[\alpha_{\mu_k, j} = \xi_k f_j^T + g_j^T w_k \quad j = 1, 2, \ldots, m \]

Then

\[
\begin{bmatrix}
\mu_k w_k^T & 0 & \ldots & 0 & w_k^T & 0 & \ldots & 0 \\
0 & \mu_k w_k^T & \ldots & 0 & 0 & w_k^T & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \mu_k w_k^T & 0 & 0 & \ldots & w_k^T \\
\end{bmatrix}
\begin{bmatrix}
f_1 \\ \vdots \\ f_m \\ g_1 \\ \vdots \\ g_m \\
\end{bmatrix}
=
\begin{bmatrix}
\alpha_{\mu_k, 1} \\
\alpha_{\mu_k, 2} \\
\vdots \\
\alpha_{\mu_k, m} \\
\end{bmatrix}
\]

where \[w_k = \alpha_{\mu_k, 1} r_{\mu_k, 1} + \alpha_{\mu_k, 1} r_{\mu_k, 2} + \ldots + \alpha_{\mu_k, 1} r_{\mu_k, m} \]

The closed-loop mode shape is determined by the choice of \[\alpha_{\mu_k, j} \]
The control gains are then given by the solution of,

\[
P_k = \begin{bmatrix} \mu_k w_k^T & 0 & \cdots & 0 & w_k^T & 0 & \cdots & 0 \\ 0 & \mu_k w_k^T & \cdots & 0 & 0 & w_k^T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mu_k w_k^T & 0 & 0 & \cdots & w_k^T \end{bmatrix}
\]

\[
Q_k = \begin{bmatrix} \lambda_k v_k^T & 0 & \cdots & 0 & v_k^T & 0 & \cdots & 0 \\ 0 & \lambda_k v_k^T & \cdots & 0 & 0 & v_k^T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k v_k^T & 0 & 0 & \cdots & v_k^T \end{bmatrix}
\]

General Procedure

- Measure the open loop input-output FRF over a desired frequency range.
- Fit MIMO rational fraction polynomials to the measure FRF and obtain the input-output transfer functions.
- Select force distribution vectors $b_k(s)$.
- Apply the Receptance Method to obtain unknown gains, g_k, f_k.

\[
\begin{bmatrix}
P_1 \\
\vdots \\
P_p \\
Q_{p+1} \\
\vdots \\
Q_{2n}
\end{bmatrix}
\begin{bmatrix}
f_1 \\
\vdots \\
f_m \\
g_1 \\
\vdots \\
g_m
\end{bmatrix}
=
\begin{bmatrix}
\alpha_1 \\
\vdots \\
\alpha_p \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

- Implementation of the controller using dSPACE in real time.
Flutter Suppression
Wind-Tunnel Aerofoil Rig

Aerofoil

Torsion Bar

Vertical Stiffness

Torsional Stiffness

Flap

V-stack piezo actuator
Open loop FRFs include not only the dynamics of the aerofoil system but also the power amplifier, the actuator, the sensors and the effects of A/D and D/A conversion, numerical differentiation (Simulink/dSPACE) of displacements and high- and low-pass Butterworth filters with cut-off frequencies of 1Hz and 35 Hz.
Poles assigned: \(\mu_{pitch} = -1.5 \pm 38i, \quad \mu_{heave} = -0.7 \pm 23i \)

at wind speed, 7m/s.
Flutter Margin

\[F = \left(\frac{\tilde{\omega}^2_2 - \tilde{\omega}^2_1}{2} \right) + \left(\frac{\sigma^2_2 - \sigma^2_1}{2} \right) \right]^2 + 4\sigma_1 \sigma_2 \left[\left(\frac{\tilde{\omega}^2_2 + \tilde{\omega}^2_1}{2} \right) + 2 \left(\frac{\sigma^2_2 + \sigma^2_1}{2} \right)^2 \right] \]

\[\tilde{\omega}_j = \omega_j \sqrt{1 - \zeta^2_j} \]

\[\sigma_j = -\zeta_j \omega_j \quad j = 1,2 \]

Zimmerman N.H. and Weissenburger J.T. (1964)

Quadratic flutter speed prediction.

Predicted flutter speed increased from 17 m/s to 20 m/s.

Separation of pitch and heave frequencies.

\[\mathbf{g} = \begin{bmatrix} -28.2 \\ 29.5 \end{bmatrix} \quad \mathbf{f} = \begin{bmatrix} 0.0284 \\ 0.0232 \end{bmatrix} \]
Vibration control – 2 DOF aeroelastic system

Controller OFF - oscillation

Controller ON - oscillation eliminated
Tensioned-Wire Plunge Nonlinearity Feedback Linearisation

\[\dot{x} = f \ x + gu \]

\[y = x_1 \quad u = \delta \]

\[x'_1 = x_2 \quad x'_2 = f_2 \ x + g_2 u \quad \text{Pitch} \]

\[x'_3 = x_4 \quad x'_4 = f_4 \ x + g_4 u \quad \text{Plunge} \]

\[x'_5 = x_1 - \varepsilon_1 x_5 \quad x'_6 = x_1 - \varepsilon_2 x_6 \]

\[x'_7 = x_3 - \varepsilon_1 x_7 \quad x'_8 = x_3 - \varepsilon_2 x_8 \quad \text{Aerodynamic states} \]

\[x'_9 = u - \varepsilon_1 x_9 \quad x'_{10} = u - \varepsilon_2 x_{10} \]

\[x'_{11} = -\varepsilon_3 x_{11} \quad x'_{12} = -\varepsilon_4 x_{12} \]

States \(x_5 \) and \(x_6 \) are associated with pitch, \(x_7 \) and \(x_8 \) are associated with plunge, \(x_9 \) and \(x_{10} \) are associated with flap motion and \(x_{11} \) and \(x_{12} \) are associated with gusts.

Pitch Linearisation

Input-output linearisation with pitch displacement chosen as the output y

$$z_1 = y = x_1, \quad z_2 = z'_1 = y' = x'_1$$

$$z'_2 = y'' = x'_2 = f_2 \ x + g_2 u$$

Relative degree $r=2$. When r is less than the number of states the system can only be partly linearised.

In matrix form,

$$\begin{bmatrix} z'_1 \\ z'_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} v, \quad \begin{bmatrix} v \\ 0 \end{bmatrix} = f_2 \ x + g_2 u,$$

Linear and nonlinear terms are located in $f_2(x)$. v denotes the artificial input – it is the term that achieves the desired linear control objective.
The artificial input may be defined as,

\[v = -k_1 z_1 - k_2 z_2, \]

Choosing \(k_1 = \omega_n^2, \quad k_2 = 2\zeta_\alpha \omega_n \) will assign the natural frequency \(\omega_n \) and damping \(\zeta_\alpha \). Then,

\[
\begin{pmatrix}
 z_1' \\
 z_2'
\end{pmatrix} =
\begin{bmatrix}
 0 & 1 \\
 -k_1 & -k_2
\end{bmatrix}
\begin{pmatrix}
 z_1 \\
 z_2
\end{pmatrix}.
\]

And the physical nonlinear input is given by,

\[
u = \frac{1}{g_2} \left(v - f_2 x \right) = \frac{1}{g_2} \left(-k_1 z_1 - k_2 z_2 - f_2 x \right).
\]

This input cancels the system dynamics and implements the linear control requirement.
Internal Dynamics

A linear coordinate transformation is carried out to obtain the system in Normal Form – such that the input u does not appear explicitly,

$$z = Tx, \quad T_{j,j} = 1 \quad j = 1:12,$$

$$T_{4910} \cdot g = 0$$

remaining terms equal to 0.

The zero dynamics is then obtained by setting the controlled coordinates to zero, i.e. $z_1 = z_2 = 0$,

$$z'_3 = z_4, \quad z'_4 = -\frac{g_4}{g_2} f_2 \, z + f_4 \, z, \quad z'_5 = -\varepsilon_1 z_5, \quad z'_6 = -\varepsilon_2 z_6,$$

$$z'_7 = z_3 - \varepsilon_1 z_7, \quad z'_8 = z_3 - \varepsilon_2 z_8, \quad z'_9 = -\frac{1}{g_2} f_2 \, z - \varepsilon_1 z_9,$$

$$z'_{10} = -\frac{1}{g_2} f_2 \, z - \varepsilon_2 z_{10}, \quad z'_{11} = -\varepsilon_3 z_{11}, \quad z'_{12} = -\varepsilon_4 z_{12},$$

Stability of the zero dynamics must be examined to ensure the stability of the nonlinear controller.
Tuned Numerical Model

Linear frequency-domain tests:

- Pitch vs. air speed
- Plunge vs. air speed

Nonlinear time-domain tests:

- Pitch vs. time
- Plunge vs. time

Numerical vs. Experimental

- Phase portrait comparison
Embedding the Numerical Model in the Aeroelastic Control Loop

1. dSPACE Inputs
2. Compute structural states (x_1-x_4)
3. Numerical aeroelastic model
4. Select (x_5-x_{12})
5. Compute artificial inputs
6. Compute physical (nonlinear) input (x)
7. dSPACE output

Additional notes:
- 3 laser displacement sensors
- Piezo-stack actuator
Test Results
Assigned Damping at $\zeta_\alpha=0.3$, $U=15\text{m/s}$

Closed-loop response

Flap motion
Aerodynamic model with 8 states, 6 structural (pitch, plunge, flap) and 2 aerodynamic states (Edwards, 1979).

Output y: plunge displacement ξ. Input u: flap command β_{com}.

Pitch Nonlinearity

\[f_{nl} = \begin{cases}
-\lambda K_\alpha \alpha, & |\alpha| \leq g_\alpha \\
-\lambda K_\alpha g_\alpha, & \alpha > g_\alpha \\
\lambda K_\alpha g_\alpha, & \alpha < -g_\alpha
\end{cases} \quad \lambda \leq 1 \]

\(g_\alpha \) defines the initial (lower) stiffness region on either side of \(\alpha=0^\circ \)

Inner region \(|\alpha| \leq g_\alpha \): Net stiffness = \((1-\lambda)K_\alpha\)

Outer region \(|\alpha| > g_\alpha \): Net stiffness = \(K_\alpha \)

\(\lambda = 1 \) produces freeplay. \(\lambda \leq 1 \) produces piecewise nonlinearity

\(K_\alpha \): chosen as the pitch stiffness of the desired linear system.
Feedback Linearisation
Non-smooth Nonlinear System Parameters

\[\dot{x} = f(x) + g(x)u, \quad \text{where}\; f(x) = \begin{cases} \dot{q} \\ \Psi q + \Phi \dot{q} + \Lambda q_a + \Omega f_{nl} \\ E_1 q + E_2 \dot{q} + F_p q_a \end{cases}, \quad g(x) = \begin{bmatrix} 0 \\ \Pi \end{bmatrix} \]

Transformation for the linearised part

\[
T = T_{pl} = \begin{bmatrix} T_{pl} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & I_{n-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & I_{2n} \end{bmatrix}
\]

No requirement to differentiate the non-smooth nonlinearity.

The transformation matrix \(T \) is invertible.

The usual smoothness requirement on the nonlinearity can be removed.

Input \(u \) eliminated in the internal dynamics.
Stability of the Plunge Zero Dynamics

The zero dynamics are found to take the form:

\[\dot{z} = \hat{A}z + \hat{b}\psi \quad z_3 \]
\[\hat{z} = \hat{z}_{3:8} \]

\[\psi \quad z_3 = \begin{cases} z_3, & |z_3| \leq g_\alpha \\ g_\alpha, & z_3 > g_\alpha \\ -g_\alpha, & z_3 < -g_\alpha \end{cases} \]

The equilibrium points are found when:

\[\hat{A} + \hat{b}e_1^T \quad z_{eq} = 0; \quad e_1^T z = z_3 \]
\[\hat{A}z_{eq} + \hat{b}g_\alpha = 0 \]
\[\hat{A}z_{eq} - \hat{b}g_\alpha = 0 \]

Assuming non-singular \(\hat{A} \) and \(\hat{A} + \hat{b}e_1^T \) and solving above for each of the 3 conditions,

\[z_{eq} = \begin{cases} 0, & |z_3| \leq g_\alpha \\ -\hat{A}^{-1}\hat{b}g_\alpha, & z_3 > g_\alpha \\ \hat{A}^{-1}\hat{b}g_\alpha, & z_3 < -g_\alpha \end{cases} \]
Stability of the Plunge Zero Dynamics

There are 2 non-zero equilibria. Lyapunov function based around the particular equilibrium point:

\[\hat{z} = z - z_{eq}, \quad V = \frac{1}{2} \hat{z}^T P \hat{z}, \quad P > 0, \quad P = P^T \]

The derivative of \(V \) for each of the three regions may be expressed as (Shevitz and Paden, 1994):

\[
\dot{V} = \begin{cases}
\hat{z}^T P \hat{A} \hat{z} + \hat{A} z_{eq} + \hat{b} g_{\alpha}, & z_3 > g_{\alpha} \\
\hat{z}^T P \hat{A} \hat{z} + \hat{A} z_{eq} - \hat{b} g_{\alpha}, & z_3 < -g_{\alpha} \\
\hat{z}^T P \hat{A} \hat{z} + \hat{A} z_{eq}, & |z_3| \leq g_{\alpha}
\end{cases}
\]

These derivatives must be strictly negative for asymptotic stability. 3 \(z_3 \) stability regions, for each of the 3 equilibria \(\rightarrow 9 \) equations to be investigated.

Uncontrolled Nonlinear Response

Reduced air speed $U^*=2.0$

(a) Freeplay

(b) Piecewise Linear Stiffness
Zero-dynamics: Freeplay

The trivial equilibrium point, $\mathbf{z}_{eq} = 0$, is unstable. The non-trivial equilibria $\mathbf{z}_{eq} = \pm \hat{\mathbf{A}}^{-1} \hat{\mathbf{b}} g_\alpha$ are stable in each of the 3 regions.

Superimposed simulated time-domain responses with randomly generated initial conditions
The trivial equilibrium point, $z_{eq}=0$, is stable in each of the 3 regions. The non-trivial equilibria are found not to be feasible.

Reduced air speed $U^*=2.0$

Superimposed simulated time-domain responses with randomly generated initial conditions
Time-domain Closed-loop Response with Feedback Linearisation

Reduced air speed $U^*=2.0$

Assigned frequency and damping $\omega_n = 1\text{Hz}, \zeta = 0.1$

(a) Freeplay

(b) Piecewise Linear Stiffness
Commanded and Actual Flap Angles

Reduced air speed $U^* = 2.0$

(a) Freeplay

(b) Piecewise Linear Stiffness
High Bandwidth Morphing Actuator (HBMA) & Modular Flexible Aeroelastic Wing (ModFlex)
Conclusions

• Linear flutter suppression demonstrated by active control using the method of receptances – based on data from a vibration test with no requirement to evaluate or to know the system matrices.

• Nonlinear aeroelastic system - plunge nonlinearity representative of future aircraft with very flexible wings.

• Feedback linearisation - demonstration of LCO suppression.

• Non-smooth nonlinearities – piecewise stiffness and freeplay.

• Feedback linearisation for non-smooth nonlinearity.

• Multiple equilibria – zero and nonzero.

• Numerical demonstration.

• MODFLEX wing in preparation – multiple control surfaces, conventional motor-driven flaps, morphing using piezo-benders.
Selected Papers