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Receptance Method

• Dynamic stiffnesses Receptances:

• No need to evaluate or to know the system matrices M, C, K.

• Any input-output transfer function may be used – dynamics of actuators,

sensors, filters etc. included in the measurement.
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Receptance Method 
Partial Pole Placement Problem 
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Unchanged Eigenvalues
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May be re-written as,

Non-trivial solution: 
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Assigned Eigenvalues
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Receptance Method
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The control gains are then given by the solution of,
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Y.M. Ram and J.E. Mottershead, Multiple-input active vibration control by partial pole
placement using the method of receptances, Mechanical Systems and Signal 
Processing, 40, 2013, 727-735.



General Procedure

• Measure the open loop input-output FRF over a desired frequency range.

• Fit MIMO rational fraction polynomials to the measure FRF and obtain the 
input-output transfer functions. 

• Select force distribution vectors bk(s).

• Apply the Receptance Method to obtain unknown gains, gk, fk.

• Implementation of the controller using dSPACE in real time.
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Torsion Bar

Torsional StiffnessVertical Stiffness

Flap
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Flutter Suppression
Wind-Tunnel Aerofoil Rig

V-stack piezo actuator

Aerofoil



Curve Fitting
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Open loop FRFs include not only the dynamics of the aerofoil system but also 

the power amplifier, the actuator, the sensors and the effects of A/D and D/A

conversion, numerical differentiation (Simulink/dSPACE) of displacements and 

high- and low-pass Butterworth filters with cut-off frequencies of 1Hz and 35 Hz.



11

Frequency/Damping Trends – Root Locus

Poles assigned: 1.5 38i, 0.7 23ipitch heave

Separation of pitch and heave frequencies

at wind speed, 7m/s.
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Flutter Margin

Predicted flutter speed 
increased from 17 m/s 
to 20 m/s.

Separation of pitch and heave frequencies.

28.2 29.5 0.0284 0.0232
T T

g f

Quadratic flutter speed 
prediction.

Zimmerman N.H. and 
Weissenburger J.T. (1964)



Vibration control – 2 DOF aeroelastic system

3

2

1
Controller ON  - oscillation eliminated

Controller OFF  - oscillation



Tensioned-Wire Plunge Nonlinearity
Feedback Linearisation
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S. Jiffri, S. Fichera, A. Da-Ronch and J.E. Mottershead, Nonlinear control for the 
suppression of flutter in a nonlinear aeroelastic system, AIAA Journal of Guidance, 
Control and Dynamics, in preparation.
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Aerodynamic

states

x x x f g u
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x

x

States x5 and x6 are associated with pitch, x7 and x8 are associated with 

plunge, x9 and x10 are associated with flap motion and x11 and x12 are 

associated with gusts. 

1u y x ux f x g



Pitch Linearisation
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Input-output linearisation with pitch displacement chosen as the output y

1 1 2 1 1z y x z z y x

2 2 2 2
z y x f g ux

In matrix form,

1 1

2 2

2 2

0 1 0
, ,

0 0 1

z z
v v f g u

z z
x

Linear and nonlinear terms are located in  f2(x). denotes the artificial input 

– it is the term that achieves the desired linear control objective.

Relative degree r=2. When r is less than the number of states the system can 

only be partly linearised. 



Pole Placement
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The artificial input may be defined as,
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,v k z k z
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This input cancels the system dynamics and implements the linear control 

requirement.



Internal Dynamics
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A linear coordinate transformation is carried out to obtain the system in Normal 

Form – such that the input u does not appear explicitly, 

,

4 910,:

, 1   1:12,
j j

jz Tx T

T g 0

remaining terms equal to 0.

The zero dynamics is then obtained by setting the controlled coordinates to 

zero, i.e. z1=z2=0,

Stability of the zero dynamics must be examined to ensure the stability of the 

nonlinear controller.
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Tuned Numerical Model
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Linear frequency-domain tests:
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Nonlinear time-domain tests:
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Embedding the Numerical Model in 
the Aeroelastic Control  Loop
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Test Results
Assigned Damping at =0.3, U=15m/s
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Feedback Linearisation
Aerofoil with Non-smooth Pitch Nonlinearity
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S. Jiffri, P. Paoletti and J.E. Mottershead, Feedback linearization in systems with non-

smooth nonlinearities, AIAA Journal of Guidance, Control and Dynamics, in press.

Edwards, J. W., Ashley, H., and Breakwell, J. V. "Unsteady aerodynamic modeling for 

arbitrary motions," AIAA Journal, Vol. 17, No. 4, 1979, pp. 365-374.

Aerodynamic model with 8 states, 6 structural (pitch, plunge, flap) and 2 

aerodynamic states (Edwards, 1979).

Output y: plunge displacement .          Input u: flap command com.



Pitch Nonlinearity
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g defines the initial (lower) stiffness region on 

either side of =0

Inner region g : Net stiffness=(1- )K
Outer region   >g : Net stiffness K

=1 produces freeplay. 1  produces piecewise

nonlinearity

K : chosen as the pitch stiffness of the desired 

linear system.

Piecewise nonlinearity

Freeplay



Feedback Linearisation
Non-smooth Nonlinear System Parameters 
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1 2

, where  ,a nl

p a

u

q 0

x f x g x f x Ψq Φq Λq Ωf g x Π

E q E q F q 0







No requirement to differentiate the non-smooth nonlinearity.

The transformation matrix T is invertible.

The usual smoothness requirement on the nonlinearity can be removed.

2 2

1 1 1 1 1 2 2

1 1

2 2 2 2

pl n

n n n n n n

n n ker n n

n

T

0 I 0 0
T

0 Π

0 I

Input u eliminated in

the internal dynamics

Transformation for the linearised part



Stability of the Plunge Zero Dynamics
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Stability of the Plunge Zero Dynamics
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There are 2 non-zero equilibria.  

Lyapunov function based around the particular equilibrium point:

1
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ˆ ˆ ˆ, , 0,T T

eq
Vz z z z Pz P P P

    
The derivative of V for each of the three regions may be expressed as 

(Shevitz and Paden, 1994):

1 3
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These derivatives must be strictly negative for asymptotic stability. 3 z3 stability 

regions, for each of the 3 equilibria → 9 equations to be investigated.

Shevitz, D., and Paden, B. "Lyapunov stability theory of nonsmooth systems," IEEE 

Transactions on Automatic Control, Vol. 39, No. 9, 1994, pp. 1910-1914.

S. Jiffri, P. Paoletti and J.E. Mottershead, Feedback linearization in systems with non-

smooth nonlinearities, AIAA Journal of Guidance, Control and Dynamics, in press.



Uncontrolled Nonlinear Response
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Plunge Pitch Flap

(a) Freeplay

(b) Piecewise Linear Stiffness

Reduced air speed U*=2.0
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Zero-dynamics: Freeplay 27

Superimposed simulated time-domain responses with randomly 
generated initial conditions

Reduced air speed U*=2.0
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Zero-dynamics: Piecewise Linear Stiffness
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Superimposed simulated time-domain responses with randomly 
generated initial conditions

Reduced air speed U*=2.0
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Time-domain Closed-loop Response 
with Feedback Linearisation
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(a) Freeplay

(b) Piecewise Linear Stiffness

Assigned frequency and damping 1Hz, 0.1n

Reduced air speed U*=2.0
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Commanded and Actual Flap Angles
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Reduced air speed U*=2.0

(a) Freeplay

(b) Piecewise Linear Stiffness
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31High Bandwidth Morphing Actuator (HBMA) & Modular 
Flexible Aeroelastic Wing (ModFlex)



Conclusions

• Linear flutter suppression demonstrated by active control using the 
method of receptances – based on data from a vibration test with no 
requirement to evaluate or to know the system matrices.

• Nonlinear aeroelastic system  - plunge nonlinearity representative of 
future aircraft with very flexible wings.

• Feedback linearisation - demonstration of LCO suppression.

• Non-smooth nonlinearities – piecewise stiffness and freeplay.

• Feedback linearisation for non-smooth nonlinearity.

• Multiple equilibria – zero and nonzero.

• Numerical demonstration.

• MODFLEX wing in preparation – multiple control surfaces, conventional 
motor-driven flaps, morphing using piezo-benders .

32



Selected Papers

• Y.M. Ram and J.E. Mottershead, The receptance method in active vibration control, American Institute of 
Aeronautics and Astronautics Journal, 45(3), 2007, 562-567. 

• M. Ghandchi Tehrani, R.N.R. Elliott and J.E. Mottershead, Partial pole placement in structures by the 
method of receptances: theory and experiments, Journal of Sound and Vibration, 329(24), 2010, 5017-
5035.

• M. Ghandchi Tehrani, J.E. Mottershead, A.T. Shenton and Y.M. Ram, Robust pole placement in structures 
by the method of receptances, Mechanical Systems and Signal Processing, 25(1), 2011, 112–122.

• Y.M. Ram and J.E. Mottershead, Multiple-input active vibration control by partial pole placement using 
the method of receptances, Mechanical Systems and Signal Processing, 40, 2013, 727-735.

• S. Jiffri, P. Paoletti, J.E. Cooper and J.E. Mottershead, Feedback linearisation for nonlinear vibration 
problems, Shock and Vibration, vol. 2014, Article ID 106531, 16 pages, 2014. doi:10.1155/2014/106531.

• X. Wei and J.E. Mottershead, Block-decoupling vibration control using eigenstructure assignment, 
Mechanical Systems and Signal Processing, http://dx.doi.org/10.1016/j.ymssp.2015.03.028i .

• X. Wei, J.E. Mottershead and Y.M. Ram, Partial pole placement by feedback control with inaccessible 
degrees of freedom, Mechanical Systems and Signal Processing, in press.

• S. Jiffri, P. Paoletti and J.E. Mottershead, Feedback linearization in systems with non-smooth 
nonlinearities, AIAA Journal of Guidance, Control and Dynamics, in press.

• S. Jiffri, S. Fichera, A. Da-Ronch and J.E. Mottershead, Nonlinear control for the suppression of flutter in a 
nonlinear aeroelastic system, AIAA Journal of Guidance, Control and Dynamics, in preparation.

33


