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SUMMARY:  New approach to the damage identification problem based on analysis of 
perturbation of elastic wave propagation is presented. The proposition is based on the use of 
pre-computed time dependent, dynamic influence matrix describing structural response to 
locally generated unit impulses. The global structural dynamic response can be decomposed 
on part caused by external excitation in undamaged structure and disturbance caused by the 
structural defects. Assuming possible locations of all potential defects in advance, an 
optimisation technique with analytically calculated gradients can be applied to solve the 
problem of the most probable defect locations. Theoretical background as well as numerical 
results are presented. 
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INTRODUCTION 
 

The damage detection systems based on array of piezoelectric transducers sending and 
receiving strain waves are intensively discussed by researchers recently (e.g. refs.1, 2). The 
signal-processing problem is the crucial point in this concept and a neural network based 
method is one of the most often suggested approaches to develop a numerically efficient 
solver for this problem (e.g. Ref.3). 

The purpose of this chapter is to propose an alternative approach to the inverse dynamic 
analysis problem (after Ref.7). Generalising so called VDM (Virtual Distortion Method, 
Ref.4) approach on dynamic problems, a dynamic influence matrix D  concept will be 
introduced. Pre-computing of the time dependent matrix D  allows decomposition of the 
dynamic structural response on components caused by external excitation in undamaged 
structure (the linear part) and on components describing perturbations caused by the internal 
defects (the non-linear part). In the consequence, analytical formulae for calculation of these 
perturbations and the corresponding gradients can be derived. The physical meaning of so-
called virtual distortions used in this paper can be explained with the notion of externally 
induced strains (non-compatible in general, e.g. caused by piezoelectric transducers, similarly 
to the effect of non-homogeneous heating). The compatible strains and self-equilibrated 
stresses are structural responses for these distortions. 

Assuming possible locations of all potential defects in advance, an optimisation 
technique with analytically calculated gradients could be applied to solve the problem of the 
most probable defect locations. The considered damage can affect the local stiffness as well 



as the mass distribution modification. It is possible to identify the position as well as intensity 
of several, simultaneously generated defects. The proposed approach can be also applied to 
identification of multi-impact location and intensity. 

Theoretical background as well as numerical results will be presented. This paper is a 
continuation of the problem described in Ref.6. 

 
 

VDM BASED DESCRIPTION OF WAVE PROPAGATION 
 

Let us describe the dynamic response of the strain increment ( )tAε∆  in the location A  and the 
time instance t  as the superimposed response caused by impulses of so called virtual 
distortions increments ( )τεα

0∆  generated in the locations α  and the time instances τ  (cf. 
Fig.1): 

( ) ( ) ( )∑∑
≤

∆−=∆
t

AA tDt
τ α

αα τετε 0 ,    (1) 

where the dynamic, time dependent, influence matrix ( )τα −tDA  describes the corresponding 
dynamic response of the strain in location A  and the time instance t , caused by the unit 
impulse virtual distortions forced in the locations α  and time instances t≤τ . Note that it is 
sufficient to compute only the matrix ( )tDAα  which stores the response for the appropriate 
unit impulse distortion forced in the initial time instant 0=τ . The virtual distortion 
increments ( )τεα

0∆  model excitations caused in locations α  by the piezoelectric transducers 
(activated by an applied current increment). In the paper, we assume that small Greek 
subscripts (α ) run through all locations of wave-generators while the capital Latin ones ( A ) 
run through locations of wave-receivers. The elements of the influence matrix ( )tDAα  can be 
determined through the integration of the motion equations (e.g. using the Newmark’s 
method) computed for the unit impulse excitation generated sequentially in the structural 
elements α . The unit impulse excitation can be supplied in form of initial velocity conditions: 

( ) mtPv ∆=0 , where P  denotes, so called, compensative force corresponding to locally 
generated unit virtual distortion impulse 10 =ε , t∆  is the integration time step, and m  is the 
mass concentrated in the charged node of the loaded structural element α . Assuming (for 
simplicity of presentation) a discrete truss structure model (Fig.1), we can describe the 
transient function for the wave propagation generated in members 2,1=α  and received in 
member 20=A . To this end it is necessary to determine, in advance, the time dependent 
dynamic influence matrix ( )tDAα , where t  runs through all time steps of the dynamic 
analysis: Tt ,0= . Having the influence matrix computed, we can calculate the 

superposition (1), where ( )τεα
0∆  describes (for the sequence of τ  instances) the shape of the 

excited signal. Then, we can achieve the form of the strain in location A  and the time period 
T,0  by summing the strain increments for all successive time instances Tt ,0∈ : 

( ) ( ) ( ) ( )ttt AA
t

AA εετεε
τ

∆+−=∆= ∑
≤

1 .    (2) 

In this way, the storage of the influence matrix ( )tDAα , allows us to determine the transient 
function (between locations α  and A ) for any shape of the excited signal. 
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Fig.1:  Truss-beam structure. 
 
 

DAMAGE INFLUENCE DESCRIPTION 
 

Let us apply the influence matrix based approach described above to the damage influence 
description. Three new, time-dependent, influence matrices ( ( )tDAi , ( )tDiα , ( )tDij ) will be 
introduced. The method of computation of the matrices is similar to the one described in the 
previous chapter. In the case of any perturbation of elastic wave propagation caused by 
defects in structural members i  (between the locations α  of the wave generator and the 
location A  of the wave observation), it is necessary to generalise the formula (1) adding the 
component ( )tR

Aε∆  related to the perturbation caused by these defects: 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑∑
≤









∆−+∆−=∆+∆=∆

t i
iAiA

R
A

L
AA tDtDttt

τ α
αα τεττετεεε 00 , (3) 

where ( )tL
Aε∆  is the part of the strain increment caused by virtual distortion increments 

( )t0
αε∆  modelling piezoelectric excitations, whereas ( )tR

Aε∆  is the component caused by 
virtual distortion increments ( )ti

0ε∆  simulating defects. From now on, we assume that small 
Latin indices ( i , j , k , l ) runs through all presumed locations of possible defects. The defect-
simulating virtual distortion increment can be expressed by the following formula: 

( ) ( ) ( )tt iii εµε ∆−=∆ 10 ,     (4) 

where ( )tiε  denotes the strain in member i  and the time instance t , while iii EE ′=µ  
denotes the ratio of the damaged member Young’s modulus to the initial one. Therefore, the 
parameter 1,0∈iµ  specifies the size of the defect in location i  (actually 1=iµ  means that 
there is no damage, while 0=iµ  means that the member i  is completely damaged so that it 
can sustain no stresses). If we assume several possible-defect locations i  (eventually, all 
structural elements of the structure), we can agree that vector iµ  specifies also the 
distribution of these defects. 

The above relation (4) comes from the more general formula: 

( ) ( )
( )

( ) ( )
( )t

tt
t

tt
E
E

i

ii

i

ii

i

i
i ε

εε
ε

εε
µ

∆
∆−∆

=
−

=
′

=
00

,              (5) 



which applies virtual distortions to simulate material parameter modifications (or material 
redistribution iii AA ′=µ  etc.). Now, let us substitute the strains ( )tiε∆  in the formula (4) 
through the formula analogous to equation (3): 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑∑
≤









∆−+∆−=∆+∆=∆

t j
jiji

R
i

L
ii tDtDttt

τ α
αα τεττετεεε 00 . (6) 

Here, similarly, increment ( )tL
iε∆  is caused by the virtual distortion ( )t0

αε∆ , modelling 
piezoelectric excitations, while increment ( )tR

iε∆  is caused by the defect-simulating virtual 
distortions ( )tj

0ε∆ . Now, the following relation between the defect parameters iµ  and the 

simulating this defect (in the time instance t ) virtual distortion increment ( )ti
0ε∆  can be 

reached: 

( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )







∆−+∆−−=∆−− ∑∑∑∑∑

<≤ t j
jij

t
ii

j
jijiij tDtDtD

ττ α
αα τεττετµεµδ 000 101 . (7) 

Note that to achieve the above expression the following relation has been used: 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑∑∑∑
<≤

∆−+∆=∆−=∆
t j

jij
j

jij
t j

jij
R
i tDtDtDt

ττ

τετετετε 000 0 . (8) 

For the distinguished time instant t , the formula (7) represents a set of i  equations with 
ij =  unknowns ( )tj

0ε∆ . To obtain ( )tj
0ε∆  for the entire time period T,0 , we have to solve 

(step by step) the set (7) for all successive time instances Tt ,0∈ . However, it is highly 
important (for the computation cost) to notice that in our algorithm ( ) 00 =ijD . Considering 
this, the system of equations (7) should be given in the simple diagonal form: 

( ) ( ) ( ) ( ) ( ) ( )







∆−+∆−−=∆ ∑∑∑∑

<≤ t j
jij

t
iii tDtDt

ττ α
αα τεττετµε 000 1 ,  (9) 

which needs only computation of the right-hand side expressions. Knowing the defect 
parameters iµ , the step by step (for the sequence of time instances t ) determination of the 
increments ( )ti

0ε∆  can be performed making use of the formula (9). Then, knowing ( )τε 0
i∆  

for t,0∈τ , the strain increments in the observed location ( )tAε∆  can be calculated making 
use of the equation (3). Summing these increments, like in the expression (2), we can 
determine the function of the strains ( )tAε  in location A  and the time period T,0 . 

 
 
 

SENSITIVITY ANALYSIS AND APPLICATION TO DAMAGE DETECTION 
 

The partial derivatives kj µε ∂∆∂ 0  can be determined from the following systems of 
equations obtained through differentiation of the formula (7): 



( ) ( )[ ] ( )
( ) ( ) ( )

( )
∑∑∑

< ∂

∆∂
−−+∆−=

∂

∆∂
−−

t j k

lj
ijiiik

j k

lj
ijiij tDt

t
D

τ µ

µτε
τµεδ

µ

µε
µδ

,
1

,
01

00

. (10) 

Actually, for the distinguished time instant t , we have got here k  sets of equations, where 
every set consists of i  linear equations with j  unknowns (and of course kji == ). Finally, 
taking advantage of ( ) 00 =ijD  (see comment to Eqs.(7), (9)) we can simplify the system to 
the following diagonal form: 

( ) ( ) ( ) ( ) ( )
∑∑

< ∂

∆∂
−−+∆−=

∂
∆∂

t j k

lj
ijiiik

k

li tDt
t

τ µ

µτε
τµεδ

µ
µε ,

1
, 00

.  (11) 

Let us know apply the above sensitivity formulae to the inverse problem of damage 
identification requiring determination of the defect size and location (which are specified by 
the defect vector iµ ), knowing (from measurements) the functions of the strain response 

( )tM
Aε∆  in locations A  to the known excitation ( )τεα

0∆  generated in locations α . Therefore, 
the problem leads actually to the determination of the vector iµ , where that assumed in 
advance locations i  should allow every significant possibility of defect distribution. Assume 
for the objective function f  the sum of the following measures Af  of the distance between 
the observed response ( )tM

Aε  in location A  and the appropriate possible response ( )tAε , 
which depends on the defect-simulating virtual distortions ( )ij t µε ,0∆ : 

( )[ ]∑∑∑ ==
A t

A
A

A tdff 2 ,     (12) 

where 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) .,''''
'

00∑∑ ∑∑

∑

≤ ≤








∆−+∆−−=

=∆+∆−=+−=−=

t j
ijAjA

M
A

t

R
A

L
A

M
A

R
A

L
A

M
AA

M
AA

DDt

tttttttttd

τ ττ α
αα µτετττεττε

εεεεεεεε

 (13) 

The most probable defect identification leads to the minimisation problem fmin , with 
respect to the control parameters iµ . To this end, the gradient approach can be applied, with 
the following analytical gradient calculated from the formulae (12), (13): 

( ) ( ) ( )
∑∑ ∑∑∑∑













∂

∆∂
−−=

∂
∂

=
∂
∂

≤ ≤A t t j k

ij
AjA

A k

A

k

Dtdff
τ ττ µ

µτε
ττ

µµ '

0 ,'
'2 , (14) 

where the partial derivatives kj µε ∂∆∂ 0  can be determined from Eq. (11). 
The iterative algorithm for the multi-defect identification requires calculation (from 

Eqs.(9) and (11)) the defect-simulating distortion increments ( )ti
0ε∆  and their gradients 

ji µε ∂∆∂ 0 , for each time step of the dynamic analysis. Making use of these components, the 
objective function (12), (13) and its gradient (14) can be calculated. Heaving and the gradient 
of the objective function determined, a modification of the material redistribution can be 
proposed: 



∆
∂
∂

−=
i

ii
f
µ

µµ ,     (15) 

where the step length ∆  can be adjusted e.g. due to the steepest descent optimisation strategy. 
Then, the calculation of the objective function and its gradient for the modified structure 
response can be performed in the next iteration. The cost of the initial computation is related 
to the determination of the structural dynamic responses for the unit impulses generated in all 
possible locations of the potential defects (the dynamic, time dependent influence matrix). 
Farther development of the proposed approach will be presented and applications to the 
damage detection will be discussed. 

 
 
THE GENERAL CASE OF MASS AND/OR STIFFNESS MODIFICATIONS 

 
Analogously to the formula (5), the simultaneous modifications of redistribution of local 
mass, as well as the stiffness, have to be taken into account through the following two, 
independent coefficients: 

( ) ( )
( )t

tt
E
E

i

ii

i

iE
i ε

εε
µ

0−
=

′
= , 

( ) ( )
( )t

tt
M
M

i

ii

i

iM
i ε

βε
µ

&&

&&&& 0−
=

′
= ,   (16) 

described through two, independent virtual distortion fields ( )ti
0ε  and ( )ti

0β . 
If we find these two fields satisfying (16), then the following two formulae describing 

dynamic responses of the modified structure: 

( ) ( ) ( )tFtuKtuM kikiiki =+&&      (17) 

(or equivalently described in the different form: ( ) ( ) ( )tFtEGtMG kiji
T
kjiji

T
kj =+ εε&&~ , where kjG  

is the local geometric matrix and lili uG=ε ) and the initial one, but affected by the virtual 
distortions simulating these modifications: 

( ) ( )[ ] ( ) ( )[ ] ( )tFttEGttMG kiiji
T
kjiiji

T
kj =−+−′ 00~ εεβε &&&&    (18) 

lead to the same solution (in terms of ( )tiε  and ( )tiε&& ). Then, subtracting equations (17) and 
(18) the following relation with vanishing (due to the satisfied conditions (16)) coefficients 
can be obtained. Therefore, the resultant structural displacements and accelerations also 
vanish, what confirms identity of the solutions for the problems (17) and (18).  

In order to determine two virtual distortion fields simulating M  and K  modifications, 
the following relations expressed through the corresponding increments in each time step of 
dynamic analysis should be taken into account: 

( ) ( ) ( )tt i
E
ii εµε ∆−=∆ 10 , ( ) ( ) ( )tt i

M
ii εµβ &&&& ∆−=∆ 10 .   (19) 

Substituting the formula (cf. Eq.(16)): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∑ ∑∑
≤ 








∆+∆−+∆−=∆+∆=∆
t j

jjiji
R
i

L
ii tDtDttt

τ α
αα τβτεττετεεε 000  (20) 



to (19)1 and the following formula (Eq. (6) differentiated twice with respect to time): 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )[ ]




∆+∆−+∆+∆−+∆+∆−+





+∆−+∆−+∆−=∆

∑

∑ ∑
≤

j
jjijjjijjjij

t
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τβτεττβτεττβτετ
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τ α

αααααα

000000
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2

2

&&&&&&&&&

&&&&&&&&

 (21) 

to (19)2, the following two relations allowing determination of the increments 0
iε∆ , 0

iβ&&∆  in 
each time step can be reached: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
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<

<
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E
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τ α
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&&&&&

&&&&&&  (22) 

Note that the property ( ) 00 =ijD  has been taken into account in the above relations. 
Making use of the formulae (22), the algorithm for determination of the two virtual 

distortion fields 0
iε∆ , 0

iβ&&∆  can be perform as follows: for each time step t  calculate 0
iε∆  and 

0
iβ&&∆  from (22) and then successively compute: 
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,
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,
1

000000
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0
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∆
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iiiiii
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ββββββ

εε
ε

εε
ε

&&&&&&&&

&&
&&&&   (23) 

to have components for calculation of  (22)2 in the next time step. 
Knowing the defect parameters E

iµ , M
iµ  the step by step (for the sequence of time 

instances t ) determination of the increments ( )ti
0ε∆ , ( )ti

0β&&∆  can be performed making use of 
the formula (22). Then, knowing ( )τε 0

i∆  and ( )τβ 0
i
&&∆  for t,0∈τ , the strain increments in 

the observed location ( )tAε∆  can be calculated making use of the equation analogous to (3). 
Summing these increments, like in the expression (2), we can determine the function of the 
strains ( )tAε  in location A  and the time period T,0 . 

The damage identification, corresponding to both modifications M  and K  can be done 
analogously to the procedure descried above. 

 
 

TESTING EXAMPLE 
 

The truss cantilever beam model (Fig.1) has been used to verify operation of the proposed 
VDM based sensitivity analysis and the damage identification technique. It has been assumed 
that the piezoelectric transducers generating sinusoidal shape of excitation are located in 
members 1 and 2 (simultaneous extension of the same intensity but the opposite sign are 
generated). The piezoelectric sensor observing wave propagation has been located in member 
20. Then, two simulation processes of wave propagation have been performed. The first one, 



for the initial (undamaged) structural configuration and the second for the structure with 
damaged members: 8, 9, 10, 11 and 12 (the Young’s modulus reduced by 40%, 20%, 30%, 
20% and 10%, up to 6.08 =µ , 8.09 =µ , 7.010 =µ , 8.011 =µ  and 9.012 =µ , respectively). 

The corresponding results ( ( ) ( )AE
P

20
0tε , where AE  defines stiffness of member 20) are 

presented in Fig.2, where 200 time steps have been applied. 
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Fig. 2:  Responses of ideal and damaged structure. 
 
Applying this second result (for 6.08 =µ , 8.09 =µ , 7.010 =µ , 8.011 =µ  and 

9.012 =µ ) as the measured response ( )tM
20ε , the damage identification algorithm (with five 

control parameters 8µ , 9µ , 10µ , 11µ  and 12µ ) has been performed. The corresponding results 
(Figs.3, 4) demonstrate the iterative process of damage identification. It is shown that during 
the process, the objective function and its gradient components converge to zero (Fig.3), 
while the defect parameters aim to the correct solution: 6.08 =µ , 8.09 =µ , 7.010 =µ , 

8.011 =µ  and 9.012 =µ  (Fig.4). 
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Fig. 3:  Damage identification process – the objective function and its gradient. 
 
 

0 20 40 60 80 100 120 140 160 180 200 220 240 260
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

8 

9 

10 

11 

12 

iµ

 
 

Fig. 4:  Damage identification process – the defect parameters. 
 



CONCLUSIONS 
 

•  New approach to the damage identification problem based on analysis of perturbation of 
elastic wave propagation has been presented.  

• The proposition is based on the use of pre-computed time dependent, dynamic influence 
matrix describing structural response to locally generated unit impulses. The global structural 
dynamic response can be decomposed on the following two parts: the first one, caused by 
external excitation in undamaged structure and the second (perturbing) one, caused by the 
structural defects (modelled through so called virtual distortions multiplied by the influence 
matrix). 

• This VDM (Virtual Distortion Method) based formulation allows numerically efficient, 
analytical gradient calculation (with respect to local defect/virtual distortion intensity)  

• Assuming possible locations of all potential defects in advance, an optimisation technique 
with analytically calculated gradients has been applied to solve the problem of the most 
probable defect locations 

• The proposed numerical tool for the inverse non-linear, dynamic problem analysis has 
been tested on the truss beam structure, identifying accurately five simultaneous defects with 
different intensities 
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