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SUMMARY: New approach to the damage identification problem based on analysis of
perturbation of elastic wave propagation is presented. The proposition is based on the use of
pre-computed time dependent, dynamic influence matrix describing structural response to
locally generated unit impulses. The global structural dynamic response can be decomposed
on part caused by external excitation in undamaged structure and disturbance caused by the
structural defects. Assuming possible locations of all potential defects in advance, an
optimisation technique with analytically calculated gradients can be applied to solve the
problem of the most probable defect locations. Theoretical background as well as numerical
results are presented.
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INTRODUCTION

The damage detection systems based on array of piezoelectric transducers sending and
receiving strain waves are intensively discussed by researchers recently (e.g. refs.1, 2). The
signal-processing problem is the crucial point in this concept and a neural network based
method is one of the most often suggested approaches to develop a numerically efficient
solver for this problem (e.g. Ref.3).

The purpose of this chapter is to propose an alternative approach to the inverse dynamic
analysis problem (after Ref.7). Generalising so called VDM (Virtual Distortion Method,
Ref.4) approach on dynamic problems, a dynamic influence matrix D concept will be
introduced. Pre-computing of the time dependent matrix D allows decomposition of the
dynamic structural response on components caused by external excitation in undamaged
structure (the linear part) and on components describing perturbations caused by the internal
defects (the non-linear part). In the consequence, analytical formulae for calculation of these
perturbations and the corresponding gradients can be derived. The physical meaning of so-
called virtual distortions used in this paper can be explained with the notion of externally
induced strains (non-compatible in general, e.g. caused by piezoelectric transducers, similarly
to the effect of non-homogeneous heating). The compatible strains and self-equilibrated
stresses are structural responses for these distortions.

Assuming possible locations of all potential defects in advance, an optimisation
technique with analytically calculated gradients could be applied to solve the problem of the
most probable defect locations. The considered damage can affect the local stiffness as well



as the mass distribution modification. It is possible to identify the position as well as intensity
of several, simultaneously generated defects. The proposed approach can be also applied to
identification of multi-impact location and intensity.

Theoretical background as well as numerical results will be presented. This paper is a
continuation of the problem described in Ref.6.

VDM BASED DESCRIPTION OF WAVE PROPAGATION

Let us describe the dynamic response of the strain increment A ,(¢) in the location 4 and the
time instance ¢ as the superimposed response caused by impulses of so called virtual
distortions increments Ag’(t) generated in the locations o and the time instances t (cf.
Fig.1):

Ae()=222 D, (t-1) Ae (), (1

<t

where the dynamic, time dependent, influence matrix D, (t —r) describes the corresponding
dynamic response of the strain in location 4 and the time instance ¢, caused by the unit
impulse virtual distortions forced in the locations a and time instances t <¢. Note that it is
sufficient to compute only the matrix D, (t) which stores the response for the appropriate
unit impulse distortion forced in the initial time instant t =0. The virtual distortion
increments Ae(t) model excitations caused in locations o. by the piezoelectric transducers

(activated by an applied current increment). In the paper, we assume that small Greek
subscripts (o ) run through all locations of wave-generators while the capital Latin ones ( A4)
run through locations of wave-receivers. The elements of the influence matrix D, (¢) can be
determined through the integration of the motion equations (e.g. using the Newmark’s
method) computed for the unit impulse excitation generated sequentially in the structural
elements o . The unit impulse excitation can be supplied in form of initial velocity conditions:
v(O):PAt/m, where P denotes, so called, compensative force corresponding to locally
generated unit virtual distortion impulse £’ =1, At is the integration time step, and m is the
mass concentrated in the charged node of the loaded structural element o . Assuming (for
simplicity of presentation) a discrete truss structure model (Fig.1), we can describe the
transient function for the wave propagation generated in members o =1,2 and received in

member 4 =20. To this end it is necessary to determine, in advance, the time dependent
dynamic influence matrix D, (t), where ¢ runs through all time steps of the dynamic

analysis: ¢ = <O,T > . Having the influence matrix computed, we can calculate the
superposition (1), where Asg(t) describes (for the sequence of T instances) the shape of the

excited signal. Then, we can achieve the form of the strain in location 4 and the time period
(0,T) by summing the strain increments for all successive time instances 7 € (0,7):

4= X 8e (e)=e ,(1-1)+ 8¢ (). @

T<t

In this way, the storage of the influence matrix D, (¢), allows us to determine the transient
function (between locations oo and A ) for any shape of the excited signal.
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Fig.1: Truss-beam structure.

DAMAGE INFLUENCE DESCRIPTION

Let us apply the influence matrix based approach described above to the damage influence
description. Three new, time-dependent, influence matrices (D ,(¢), D, (t), D, (£)) will be

introduced. The method of computation of the matrices is similar to the one described in the
previous chapter. In the case of any perturbation of elastic wave propagation caused by
defects in structural members i (between the locations o of the wave generator and the
location A of the wave observation), it is necessary to generalise the formula (1) adding the

component Ag *(¢) related to the perturbation caused by these defects:

AaA(t)zAsj(t)—i-Asf(t):Z{ZDAq(t—r)Aei(r)—i—Zi:DA[(t—r)As?(r)}, 3

T<t a

where Ag’(¢) is the part of the strain increment caused by virtual distortion increments
Ae!(t) modelling piezoelectric excitations, whereas Ae®(¢) is the component caused by
virtual distortion increments Ae ”(¢) simulating defects. From now on, we assume that small

Latin indices (i, j,k,/) runs through all presumed locations of possible defects. The defect-
simulating virtual distortion increment can be expressed by the following formula:

Ae(t)=(1-u,) Ae,(r), (4)

where ¢,(¢) denotes the strain in member i and the time instance ¢, while w, = E,/E/
denotes the ratio of the damaged member Young’s modulus to the initial one. Therefore, the
parameter |, € <0,1> specifies the size of the defect in location i (actually p, =1 means that

there is no damage, while p;, =0 means that the member i is completely damaged so that it
can sustain no stresses). If we assume several possible-defect locations i (eventually, all
structural elements of the structure), we can agree that vector p, specifies also the

distribution of these defects.
The above relation (4) comes from the more general formula:

_E _z,(0)=e]() _ Ae,(0)-Ae/(r)
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which applies virtual distortions to simulate material parameter modifications (or material
redistribution p, = 4,/ 4] etc.). Now, let us substitute the strains Ag,(¢) in the formula (4)

through the formula analogous to equation (3):

Ae,(t)=2Ae (t)+Aef ()= 1D D, (t-1) Ae)(t)+ > D, (t-1) Ae’(x )} (6)
T<t a J

Here, similarly, increment Ag” (t) is caused by the virtual distortion Ag) (t), modelling

piezoelectric excitations, while increment Ag*(¢) is caused by the defect-simulating virtual

distortions As?(t). Now, the following relation between the defect parameters p, and the

simulating this defect (in the time instance ) virtual distortion increment Ag’(¢) can be

reached:

5, ~-1) 2, 0] 2000 = (1-1,) | TXD,. %) s )+ XX, (0=2) s |- ()

<t o <t j

Note that to achieve the above expression the following relation has been used:

Aek(t)= ZZDU(Z—r) As_?(r)zZDU(O) Aa?(t)+ZZDU(t—r) As_?(r). (8)

<t j <t

For the distinguished time instant ¢, the formula (7) represents a set of i equations with
j =i unknowns Ae(¢). To obtain Ae!(¢) for the entire time period (0,T’), we have to solve

(step by step) the set (7) for all successive time instances ¢ € <O,T > However, it is highly
important (for the computation cost) to notice that in our algorithm D, (0)= 0. Considering

this, the system of equations (7) should be given in the simple diagonal form:

A5010)= (1) | XX Dale—%) 2626+ X XD 1) 4sle) . ©)

<t o <t

which needs only computation of the right-hand side expressions. Knowing the defect
parameters L, the step by step (for the sequence of time instances ¢) determination of the

increments Ag(¢) can be performed making use of the formula (9). Then, knowing Ae’(t)
for T €(0,1), the strain increments in the observed location Ae () can be calculated making

use of the equation (3). Summing these increments, like in the expression (2), we can
determine the function of the strains € ,(¢) in location 4 and the time period <O, T > .

SENSITIVITY ANALYSIS AND APPLICATION TO DAMAGE DETECTION

The partial derivatives GAS? /apk can be determined from the following systems of

equations obtained through differentiation of the formula (7):



3| zy—(l—ui)Dly(O)]M—%,k A ( W)Y D, () aAga( u,). (10)

J a“k <t j }’lk

Actually, for the distinguished time instant ¢, we have got here k sets of equations, where
every set consists of i linear equations with j unknowns (and of course i = j = k). Finally,

taking advantage of D, (O): 0 (see comment to Eqgs.(7), (9)) we can simplify the system to

the following diagonal form:

0 6A
one) () _ 5, A, ()+(1-p,) 3 D, (t-7) ons e, ) ”’) (11)

ﬁuk <t j 8“’]{

Let us know apply the above sensitivity formulae to the inverse problem of damage
identification requiring determination of the defect size and location (which are specified by
the defect vector p,), knowing (from measurements) the functions of the strain response

Ae* (¢) in locations A to the known excitation Ae’(t) generated in locations o . Therefore,
the problem leads actually to the determination of the vector p,, where that assumed in

advance locations i should allow every significant possibility of defect distribution. Assume
for the objective function f the sum of the following measures f, of the distance between

the observed response sff(t) in location A4 and the appropriate possible response ¢ A(t),

which depends on the defect-simulating virtual distortions Aef(t, u,):
f=2 =22 0d ) (12)
A A4t

where

4= 0)-e.0) =¥ O-Bi0+ei0]=et (- Xt 0+ 251 (0)]-
ZZ{ZDMT_T As ZDA/T r)As( u)}

1<t t'<t o

(13)

The most probable defect identification leads to the minimisation problem min /', with
respect to the control parameters p,. To this end, the gradient approach can be applied, with
the following analytical gradient calculated from the formulae (12), (13):

af zafA :_2ZA:ZdA {ZZZDA,T i aAgaiku)}’ i

Ly a“k t<tt'<t

where the partial derivatives aAe? / ou, can be determined from Eq. (11).

The iterative algorithm for the multi-defect identification requires calculation (from
Egs.(9) and (11)) the defect-simulating distortion increments Ag; (t) and their gradients
OAg! / Ou; , for each time step of the dynamic analysis. Making use of these components, the

objective function (12), (13) and its gradient (14) can be calculated. Heaving and the gradient
of the objective function determined, a modification of the material redistribution can be
proposed:
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where the step length A can be adjusted e.g. due to the steepest descent optimisation strategy.
Then, the calculation of the objective function and its gradient for the modified structure
response can be performed in the next iteration. The cost of the initial computation is related
to the determination of the structural dynamic responses for the unit impulses generated in all
possible locations of the potential defects (the dynamic, time dependent influence matrix).
Farther development of the proposed approach will be presented and applications to the
damage detection will be discussed.

THE GENERAL CASE OF MASS AND/OR STIFFNESS MODIFICATIONS

Analogously to the formula (5), the simultaneous modifications of redistribution of local
mass, as well as the stiffness, have to be taken into account through the following two,
independent coefficients:

e _Ei_e()-¢/(t)
i E'_ g,

€ () M _ Mi _ g“i(t)_ "io(l)

Te0 M M e "

described through two, independent virtual distortion fields &”(¢) and B (¢).

If we find these two fields satisfying (16), then the following two formulae describing
dynamic responses of the modified structure:

Mkii/ii(t)-’_Kkiui(t):Fk(t) (17)

(or equivalently described in the different form: GTM £,

Jivi

is the local geometric matrix and €, = G,u,) and the initial one, but affected by the virtual

()+G E &, () Fk(t),where G,

ki ji%i

distortions simulating these modifications:
G, ()= B O+ GLE e, (0= ()] = F(0) (18)

lead to the same solution (in terms of si(t) and €, (t)). Then, subtracting equations (17) and

(18) the following relation with vanishing (due to the satisfied conditions (16)) coefficients
can be obtained. Therefore, the resultant structural displacements and accelerations also
vanish, what confirms identity of the solutions for the problems (17) and (18).

In order to determine two virtual distortion fields simulating M and K modifications,
the following relations expressed through the corresponding increments in each time step of
dynamic analysis should be taken into account:

Asl.o(t):(l W, )Aa (t), AR ):( -W; )As (z). (19)

Substituting the formula (cf. Eq.(16)):

Ag (t)=Ael(t)+ Aef (2 Z{ZD t—1)Ael(t)+ ZD 11 [As )+ AB ()]} (20)

T<t (o]



to (19); and the following formula (Eq. (6) differentiated twice with respect to time):
{Z[D (TG )+ 2D, (— )N )+ By (- )Ae )]+

(21)
* Z[Dz/ (B )(AS? (c)+ AB? (c ))+ 2Di/‘ (t- )(AS?(T )+ AB? (c ))+ Dij (t— )(AE? )+ ABj G ))]}

to (19),, the following two relations allowing determination of the increments Ae’, AP’ in
each time step can be reached:

Ae/(¢)

<t o

(l—pl )Z{ZDia(t—t)Aag(t)JrZD t— r [As +AB ( )]}
AR ()= (1- )m{;[z) (= )Aet )+ 2D, (— A )+ By (- )Ae )]+ (22)

+Z[Dij(t—t)(Agf(r)+AB?(1:))+2Dij(t—t)(Aé?(1:)+ABf(r))+bl.j(t—T)(Asj.)(t)+ABJQ(T))]}.

Note that the property D, (0) =0 has been taken into account in the above relations.

Making use of the formulae (22), the algorithm for determination of the two virtual
distortion fields Ae’, A’ can be perform as follows: for each time step ¢ calculate Ag’ and

AB? from (22) and then successively compute:

Ael(t)—Ael(t—1) oy AE)(t)-AE)(t-1)
') N M=o (23)
AR ()=AB] (0)Ar+ AR (1 =1), AB/(c)=AB](1)Ar +AB (- 1)

to have components for calculation of (22), in the next time step.
Knowing the defect parameters p’, u the step by step (for the sequence of time

instances ¢) determination of the increments Ae (t), AB'Z.O (t) can be performed making use of
the formula (22). Then, knowing Ae (r) and ABI.O (1:) for T e <O,t>, the strain increments in

the observed location Ag A(t) can be calculated making use of the equation analogous to (3).
Summing these increments, like in the expression (2), we can determine the function of the
strains € ,(¢) in location 4 and the time period (0, 7).

The damage identification, corresponding to both modifications M and K can be done
analogously to the procedure descried above.

TESTING EXAMPLE

The truss cantilever beam model (Fig.1) has been used to verify operation of the proposed
VDM based sensitivity analysis and the damage identification technique. It has been assumed
that the piezoelectric transducers generating sinusoidal shape of excitation are located in
members 1 and 2 (simultaneous extension of the same intensity but the opposite sign are
generated). The piezoelectric sensor observing wave propagation has been located in member
20. Then, two simulation processes of wave propagation have been performed. The first one,



for the initial (undamaged) structural configuration and the second for the structure with
damaged members: 8, 9, 10, 11 and 12 (the Young’s modulus reduced by 40%, 20%, 30%,
20% and 10%, up to py, =0.6, p, =0.8, pn,, =0.7, n,, =0.8 and p,, =0.9, respectively).

The corresponding results (& 2o(t)/ (%), where E A defines stiffness of member 20) are

presented in Fig.2, where 200 time steps have been applied.
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Fig. 2: Responses of ideal and damaged structure.

Applying this second result (for p, =0.6, p, =08, pn,=0.7, p,=08 and
i, =0.9) as the measured response & (¢), the damage identification algorithm (with five
control parameters pg, W, My, U,; and p,,) has been performed. The corresponding results

(Figs.3, 4) demonstrate the iterative process of damage identification. It is shown that during
the process, the objective function and its gradient components converge to zero (Fig.3),
while the defect parameters aim to the correct solution: pg, =0.6, pu, =08, p,, =0.7,

u, =0.8 and p, =0.9 (Fig4).
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Fig. 3: Damage identification process — the objective function and its gradient.
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CONCLUSIONS

e New approach to the damage identification problem based on analysis of perturbation of
elastic wave propagation has been presented.

e The proposition is based on the use of pre-computed time dependent, dynamic influence
matrix describing structural response to locally generated unit impulses. The global structural
dynamic response can be decomposed on the following two parts: the first one, caused by
external excitation in undamaged structure and the second (perturbing) one, caused by the
structural defects (modelled through so called virtual distortions multiplied by the influence
matrix).

e This VDM (Virtual Distortion Method) based formulation allows numerically efficient,
analytical gradient calculation (with respect to local defect/virtual distortion intensity)

e Assuming possible locations of all potential defects in advance, an optimisation technique
with analytically calculated gradients has been applied to solve the problem of the most
probable defect locations

e The proposed numerical tool for the inverse non-linear, dynamic problem analysis has
been tested on the truss beam structure, identifying accurately five simultaneous defects with
different intensities
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