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Abstract This paper presents a method for damage identi-
fication by adding virtual masses to the structure in order to
increase its sensitivity to local damages. The main concept
is based on the Virtual Distortion Method (VDM), which is a
fast structural reanalysis method that employs virtual distor-
tions or pseudo loads to simulate structural modifications.
In this paper, the structure with an added virtual mass is
called the virtual structure. First, the acceleration frequency
response of the virtual structure is constructed numerically
by the VDM using local dynamic data measured only by
a single excitation sensor and a single acceleration sensor.
Second, the value of the additional mass is determined via
sensitivity analysis of the constructed frequency responses
of the virtual structure with respect to damage parame-
ters; only the natural frequencies with high sensitivity are
selected. This process is repeated for all the considered
placements of the virtual mass. At last, the selected natural
frequencies of all the virtual structures are used together for
damage identification of the real structure. A finite element
(FE) model of a plane frame is used to introduce and verify
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the proposed method. The damage can be identified pre-
cisely and effectively even under simulated 5 % Gaussian
noise pollution.
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1 Introduction

In structural health monitoring (SHM) (Chang et al. 2003),
structural damage identification (Fan and Qiao 2011) plays
an important role in maintaining integrity and safety of
structures. In the recent decades, it has become an exten-
sively researched field in civil engineering. Even if many
effective methods for damage identification have been
developed, monitoring of large and complex structures is
still a challenge due to their complexity, limitation of instru-
mentation and response insensitivity to local damage.

The process of damage identification includes damage
detection, localization and estimation of its extent. Signal
processing methods, such as spectral methods (El-Shafie
et al. 2012), wavelet analysis (Kim and Melhem 2003) or
Hilbert-Huang transform (Tang et al. 2011), can detect the
damage directly and quickly using the measured response
without a parametric structural model. Although these meth-
ods can catch the moment when the damage occurred and
its location, they usually cannot estimate the damage extent
accurately. The extents of the damage are usually optimized
via the finite element (FE) model using certain dynamic
characteristics of the structure, such as flexibility matrix
(Duan et al. 2005), natural frequencies and mode shapes
(Hassiotis 2000; Lin and Ewins 1990), responses in time or
frequency domain (Zhang et al. 2012), etc. Among dynamic
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structural properties, natural frequencies reflect the most
basic dynamic characteristics of the structure, and they can
be identified easily, accurately and reliably by several well-
known modal analysis methods, such as ERA (Eigensystem
Realization Algorithm) or SSI (Stochastic Subspace Iden-
tification) method. Therefore, the methods based on modal
information are widely used for damage identification. For
example, Yun and Bahng (2000) monitor local stiffness
modifications using natural frequencies and mode shapes.
Jaishi and Ren (2007) update the parameters of the finite
element model based on eigenvalue and strain energy resid-
uals using an multiobjective optimization technique. An and
Ou (2011) utilize local modes to detect local damages of a
truss structure.

In practice, it is often not easy to obtain accurate higher
natural frequencies from measured responses, and so only
lower natural frequencies are usually estimated. For com-
plex and large structures in civil engineering, the number of
unknown damage-related parameters is large, much larger
than the number of estimable natural frequencies. There-
fore, the potential of damage identification methods based
on natural frequencies is limited unless the information they
provide can be complemented. There is a general family
of approaches that aim at this problem by applying struc-
tural modifications to the monitored structure in the purpose
of obtaining more information from the structures con-
structed this way. Nalitolela et al. (1992) present a method
of model updating by adding physical masses or stiffen-
ers on the structure and utilizing modal information of the
perturbed structures. This method is further improved by
Nalitolela et al. (1993), which use imagined stiffness in a
selected structural degree of freedom (Dof). Cha and de
(2001) add known physical masses to the structure and then
identify damage using the orthogonal conditions of the sys-
tem eigenvalue problem. Dinh et al. (2012) improve this
method using the state-space transformation of the eigen-
value problem, which is applicable to non-proportionally
damped structures. Dems and Mróz (2010) identify damage
using modal, static and thermographic analysis with addi-
tional control parameters such as mass, support, load or
thermal loading.

Increasing the sensitivity of a structure by adding mass is
a very appealing concept. However, in real application it is
not always possible to fix perfectly a physical mass to the
structure in a proper position and of proper weight. There-
fore, this paper proposes a method that performs a virtual
modification of the structure and adds a virtual mass instead
of a physical mass. The general methodology of the Vir-
tual Distortion Method (VDM) is used (Kołakowski et al.
2008). The VDM belongs to fast structural reanalysis meth-
ods (Akgün et al. 2001) and employs virtual distortions and
pseudo loads to model various structural modifications. The
response of the modified structure is constructed at a low

cost using a limited set of locally measured responses of the
original structure, without solving from scratch the modified
equation of motion. Such a methodology is versatile and
the VDM has been successfully used for modeling and/or
identification of such structural characteristics as stiffness
(Swiercz et al. 2008), mass (Suwała and Jankowski 2012),
moving mass (Zhang et al. 2010; Bajer and Dyniewicz
2009), damping (Mróz et al. 2009), fixed and free boundary
conditions (Hou et al. 2012) or prestressing (Holnicki-Szulc
and Haftka 1992).

This paper employs the VDM to construct the frequency
response function (FRF) of a real structure with a virtual
mass added in a selected Dof (called the virtual structure).
Such an approach has three main advantages: (1) the FRF
of the virtual structure is constructed using only a single
acceleration response and a single corresponding excitation;
(2) the virtual mass can be added in an arbitrary Dof of the
structure and with an arbitrary weight; (3) the sensitivity of
natural frequencies to damage can be increased by adding
virtual masses to the involved elements, so that the virtual
structures constructed this way provide additional dynamic
information for effective and unique identification.

This paper is structured as follows. The next two sections
derive the proposed approach. The process of construct-
ing the FRF of a virtual structure is first deduced based
on the VDM. Several virtual structures are then simulta-
neously constructed with virtual masses added in different
locations. Sensitivity analysis of their natural frequencies is
performed in order to select the masses, their locations and
the natural frequencies with high sensitivities with respect
to all the damage parameters. Finally, damage identification
procedure is proposed that combines all the virtual struc-
tures. In the fourth section, a numerical example of a plane
frame is utilized to illustrate and test the proposed method.
Its effectiveness is demonstrated at a simulated Gaussian
measurement noise level of 5 % rms.

2 Virtual structure and its FRF

This section derives the FRF of a given real structure with
a virtual mass added. The general case is derived and sim-
plified to describe the case in which only a single degree
of freedom (Dof) is affected, measured and excited. A sim-
ple formula is then used for approximation of the natural
frequencies of the virtual structure in dependence of the
added mass.

2.1 General case

Assume the acceleration response of a real structure with nd

Dofs is measured in na points and let the structure be excited
by nf loading forces. Denote by M, C and K respectively the
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mass, damping and stiffness matrix. In frequency domain,
the equilibrium equation can be written as:
⎧
⎨

⎩

[
−ω2M + jωC + K

]
X(ω) = BF(ω),

A(ω) = DẌ(ω),
(1)

where B is the load allocation matrix with the dimensions
nd × nf, D is the observation matrix with the dimensions
na×nd, the vector F(ω) collects the spectra of the excitation
forces and the vector A(ω) contains the spectra of measured
accelerations.

The frequency response function ḧ(ω) : F(ω) �→ A(ω)

of the na acceleration responses of the real structure with
respect to the nf excitation forces, can be thus expressed as

ḧ(ω) = DḦ(ω)B, (2)

where Ḧ(ω) = −ω2H(ω) is the acceleration frequency
response matrix and H(ω) is the frequency response matrix
of the real structure with the dimensions nd × nd,

H(ω) = [−ω2M + jωC + K]−1. (3)

Consider a modification �M of the mass matrix. In fre-
quency domain, the equilibrium equation of the modified
structure is

[−ω2(M + �M) + jωC + K]XV(ω, �M) = BF(ω), (4)

where XV(ω, �M) is the response of the modified structure.
The VDM moves the modification term to the right-hand
side of the equation. Equation (4) is then expressed in the
equivalent form:

[−ω2M+jωC+K]XV(ω, �M) = BF(ω)+P(ω, �M), (5)

which is the equilibrium equation of the real structure sub-
jected additionally besides F(ω) to the pseudo load vector
P(ω, �M) that models the added mass,

P(ω, �M) = −�MẌV(ω, �M), (6)

where ẌV(ω, �M) = −ω2XV(ω, �M). Equation (5) sug-
gests that the acceleration response of the modified structure
equals the sum of original response and the response to the
pseudo load,

ẌV(ω, �M) = Ẍ(ω) + Ḧ(ω)P(ω, �M). (7)

Substitution of (7) into the right-hand side of (6) yields the
following equation with the pseudo load in the role of the
unknown:
[
I + �MḦ(ω)

]
P(ω, �M) = −�MẌ(ω), (8)

where I is the identity matrix of the appropriate dimen-
sions. Solving (8), the resulting pseudo load can be used in
(7) to find the acceleration response of the structure with
added mass.

The above formulation reveals two important features of
the VDM:

1. In case of a localized mass modification, the matrix �M
is sparse and (8) simplifies to an equation of very lim-
ited dimensions in comparison to the dimensions of the
full equilibrium equation. Such a feature is common to
all fast reanalysis methods (Akgün et al. 2001).

2. The acceleration response of the structure with added
mass is computed by (7) and (8). The response is
expressed solely in terms of the modification �M and
certain basic characteristics of the real structure, Ḧ(ω)

and Ẍ(ω). These characteristics can be computed using
an updated FE model of the real structure, but they
can be also measured experimentally, which makes the
VDM an essentially nonparametric approach and which
is unlike other reanalysis methods.

Both features become particularly clear, if a single Dof is
used for excitation, measurement and modification. This is
the case considered in this paper.

2.2 Case of a single affected Dof

If the observation, excitation, and an additional mass are all
located only along the same ith Dof, then

D = IT
i , B = Ii , �M = m IiI

T
i , (9)

where Ii is the nd dimensional vector with 1 in the ith posi-
tion and 0s elsewhere, and m is the additional mass that
modifies the structural mass only in the ith Dof. Due to
(6), the equivalent pseudo load acts only in the ith Dof and
equals −m AV(ω, m), where AV(ω, m) is the acceleration of
the modified structure along the same Dof. In such a setup,
(7) simplifies into a scalar equation

AV(ω, m) = A(ω) − mḦii(ω)AV(ω, m), (10)

which yields the acceleration response of the modified
structure,

AV(ω, m) = A(ω)

1 + mḦii(ω)
. (11)

Since

Ḧii(ω) = A(ω)/F (ω), (12a)

ḦV
ii (ω, m) = AV(ω, m)/F (ω), (12b)

the acceleration FRF of the modified structure is

ḦV
ii (ω, m) = Ḧii(ω)

1 + mḦii(ω)
= A(ω)

F (ω) + mA(ω)
. (13)

For each additional mass m, the acceleration frequency
response ḦV

ii (ω, m) of the modified structure can be thus
constructed by the Fourier transforms of the measured time-
domain response a(t) and structural excitation f (t) of the
real structure. The FRF of the modified structure is thus
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computed solely numerically in terms of the measured
response and excitation of the real structure: there is no need
to actually fix a physical additional mass to the structure,
which facilitates practical implementation of the method.
In applications, the weight and placement of the additional
mass can be chosen flexibly according to the demand of
the analysis. The modified structure with additional virtual
mass modeled in this way is called the virtual structure.

2.3 Natural frequencies of a virtual structure

Let the virtual structure constructed by adding a virtual
mass m in the ith Dof of the real structure be symboli-
cally denoted by Gi(m). By adding the virtual mass, the
dynamic characteristics of the virtual structure, including its
natural frequencies, are changed compared to the original
real structure. The j th natural frequency ωV

ji(m) of Gi(m)

can be found via an analysis of the constructed acceleration
FRF. Due to the measurement noise and the finite frequency
resolution of the FFT, a straightforward peak picking proce-
dure may not yield results accurate enough for the purpose
of damage identification. The accuracy can be usually sig-
nificantly improved by averaging out the noise with even a
simple approximation of the raw values. In this paper, an
approximation of the following form is used:

ωV
ji(m) ≈ a0 + eQ(m), (14)

where a0 is a constant and Q(m) is a polynomial of a
low order, which can be selected on a case-by-case basis
in dependence on the constructed FRF nephogram and the
considered range of the virtual masses m.

3 Damage identification by adding virtual masses

In practice, the virtual structure is constructed based on
measurements of a damaged real structure in order to
increase the sensitivity of its natural frequencies to the
investigated damage parameters. Usually several virtual
masses need to be separately added in different Dofs in
order to cover all the parameters. The FE model of the
undamaged structure is then updated, taking separately into
account all the virtual masses, to fit its natural frequencies
to the constructed values.

3.1 Damage model

Assume that the global structure is divided into n substruc-
tures and let the structural damage be modeled in terms of
stiffness reduction ratios of the substructures. The damage
extent of the lth substructure, μl ∈ (0, 1], is defined as

K̃l = μlKl , (15)

where Kl is the original undamaged stiffness matrix of the
lth substructure expressed in in the global Dofs and K̃l is its
damaged stiffness matrix. The damage of the global struc-
ture is thus quantified by the vector μ = {μ1, μ2, . . . , μn}T

of the damage extents of the substructures. The global stiff-
ness matrix K(μ) of the damaged structure is assembled as

K(μ) =
n∑

l=1

μlKl , (16)

which for a vector of ones yields also the global stiffness
matrix K(μ0) of the original undamaged structure,

μ0 = {1, 1, . . . , 1}. (17)

3.2 Sensitivity of the natural frequencies

By adding a virtual mass to the real structure, dynamic
characteristics of the resulting virtual structure Gi(m) are
changed compared to the original real structure Gi(0). In
this way, virtual structure can be designed and used pur-
posely for damage identification. Here, the virtual mass is
added in the aim of increasing the relative sensitivity of
natural frequencies with respect to damage parameters μl .

3.2.1 Structure with a known damage (or undamaged)

Assuming the damage vector μ, characteristics of the j th
natural frequency ωV

ji(μ, m) of the corresponding virtual
structure, which is denoted symbolically by Gi(μ, m),
depend on three parameters: the order j of the natural fre-
quency, the virtual mass m and its placement i. The virtual
mass does not affect stiffness, thus the stiffness matrix of
such a virtual structure is still K(μ). Let Rjil denote the
absolute sensitivity of ωV

ji(μ, m) with respect to the damage
extent μl of the lth substructure,

Rjil(μ, m) = ∂ωV
ji(μ, m)

∂μl

= (ϕV
ji(μ, m))TKl ϕ

V
ji(μ, m)

2ωV
ji(μ, m)

,

(18)

where ϕV
ji(μ, m) is the j th mass-normalized global mode

shape of the virtual structure Gi(μ, m). The relative sensi-
tivity is defined as

ηjil(μ, m) = Rjil(μ, m)

ωV
ji(μ, m)

= (ϕV
ji(μ, m))TKl ϕ

V
ji(μ, m)

2(ωV
ji(μ, m))2

.

(19)

The problem of optimum mass placement is a combina-
torial problem, which is approached here in a heuristic way
based on common engineering sense: in order to increase
the sensitivity to μl , a single virtual mass is added to the lth
substructure in the approximate antinode of its lowest-order



Structural damage identification by adding virtual masses

local substructural mode. Thus, the placement i in (19) is in
principle a function of l.

By adjusting the value of the additional mass m, there
exists an optimum value that maximizes the relative sensi-
tivity ηjil(μ, m). Using (19), it can be deduced that the sum
of the relative sensitivities

∑
l ηjil(μ, m) equals 1/2. The

sensitivity is nonnegative, and thus ηjil(μ, m) ∈ [0, 1/2].
As a result, given l and the related i, a threshold value might
be used to facilitate the selection process of the mass m and
the order j of the natural frequency ωV

ji(μ, m), so that it is
sensitive enough to a given damage parameter μl . Such a
procedure can yield a limited number nf of natural frequen-
cies and virtual structures that are highly sensitive to all the
considered damage parameters. The selected frequencies
are denoted by ωV

jpip
(μ, mp), where p = 1, 2, . . . , nf.

3.2.2 Real structure with an unknown damage

The relative sensitivity ηjil(μ, m) can be computed using
(18) only if the corresponding mode shape ϕV

ji(μ, m) is
known. Thus, the selection process described above can
be performed only for a structure with a known dam-
age vector μ, while the real damaged structure has an
unknown μ that needs to be identified. The above sensi-
tivity analysis is thus usually performed based on the FE
model of the undamaged structure defined by (17). The
results obtained this way provide only a baseline for the
selection of the virtual structures and their natural frequen-
cies. Once selected, the corresponding natural frequencies
ωV

jpip
(mp) can be constructed for the real damaged structure

based on the experimentally measured responses and exci-
tations using the approach described in Section 2 and used
as a known dynamic information for updating the vector μ

through fitting of the theoretical values ωV
jpip

(μ, mp), see
Section 3.3.

The baseline results of the selection process are obtained
by analyzing the undamaged structure. Given the real struc-
ture, which is damaged in an unknown way, the process
can be supported with heuristic information provided by
the constructed acceleration FRF. Consider the formula for
the relative sensitivity (19) and the approximate formula for
the acceleration FRF of a virtual structure at its j th natural
frequency,

ḦV
ii (ω

V
ji(m), m) ≈ j(ϕV

ji(m))TIiIT
i ϕV

ji(m)

2ζj

, (20)

which is obtained for ω = ωj = ωV
ji(m) and φj = ϕV

ij (m)

from the general exact formula,

Ḧii(ω) =
n∑

j=1

(jω)2φjiφji

ω2
j − ω2 + 2jζjωjω

, (21)

where ωj is the j th natural frequency, ζj is the damp-
ing ratio of the j th structural mode and the vector φj =
{φj1, . . . , φjnd} is its shape. The formal similarity of (19)
and (20), together with the fact that i is the antinode of the
first distortion eigenvector of Kl , suggests that pronounced
peaks of the relative sensitivity might be correlated with
pronounced peaks of the constructed acceleration FRF.

3.3 Damage identification

Basically, the Gauss–Newton optimization procedure is
employed to fit in relative terms the selected natural fre-
quencies computed using the FE model of the structure to
their counterparts constructed using the measurements of
the real damaged structure. The following objective function
is used:

F(μ) = 1

2

nf∑

p=1

(
�ωV

jpip
(μ, mp)

)2
, (22)

where

�ωV
jpip

(μ, mp) =
ωV

jpip
(mp) − ωV

jpip
(μ, mp)

ωV
jpip

(mp)
(23)

is the relative discrepancy between ωV
jpip

(μ, mp), which is
the natural frequency computed using the damage vector μ

and the FE model of the structure, and ωV
jpip

(mp), which
is the corresponding natural frequency constructed using
measurements of the real damaged structure. In the vector
notation, the objective function and its gradient can be stated
as

F(μ) = 1

2
‖�ωV(μ)‖2, (24a)

∇F(μ) = −JT(μ)�ωV(μ), (24b)

where the vector �ωV(μ) collects together all the nf relative
discrepancies �ωV

jpip
(μ, mp) and J(μ) is the Jacobi matrix

of �ωV(μ) with respect to μ, which can be computed using
(18). If the Gauss approximation to the Hessian is used,

∇2F(μ) ≈ JT(μ) J(μ), (25)

then the Newton update rule yields

μk+1 = μk + J�(μ)�ωV(μ), (26)

where J�(μ) is the pseudo-inverse of the Jacobi matrix.
The starting point for optimization can be selected to be μ0
defined in (17), which corresponds to the undamaged state
of the structure.

4 Numerical verification

First, a simple two-story plane frame model is used to verify
that virtual masses can be used to increase the sensitivities
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Fig. 1 Two-story plane frame: (left) the original structure; (middle) a
virtual mass added in the middle of the first substructure; (right) testing
excitation and measurement

of natural frequencies to local damages, as well as to illus-
trate the application principles of the proposed approach.
Second, a four-story frame is employed to test the damage
identification procedure.

4.1 Two-story plane frame

4.1.1 The structure and the damage

A two-story plane frame model is shown in Fig. 1 (left). The
height of each floor and the width of the span are 0.6 m.
The modulus of elasticity is 2.1 GPa, and the density is
7850 kg/m3. The cross-sections of all the elements are the
same, 3 × 10−4 m2, and their second moment of area is
9 × 10−10 m4. Each pillar and each beam is further divided
into 4 finite elements.

The frame consists of 4 pillars and 2 beams, which are
the 6 substructures to be identified in this example. The
substructures are numbered as shown in Fig. 1. The 2nd,
3rd and 5th substructures are assumed to be damaged with
the damage extents shown in Fig. 2. The first five natu-
ral frequencies of the undamaged original structure and the
damaged structure are listed in Table 1.

Fig. 2 Two-story plane frame: damage extents of the substructures

Table 1 Two-story plane frame: the first five natural frequencies of
the undamaged original structure and the damaged structure

Order 1 2 3 4 5

Undamaged [Hz] 5.90 19.48 42.84 61.06 67.07

Damaged [Hz] 4.78 16.92 37.60 50.87 54.84

4.1.2 Sensitivity analysis and the FRF of the undamaged
structure

The model of the undamaged structure is used to illustrate
the sensitivity analysis and for verification of the process
of constructing the frequency responses of the original
structure with a virtual mass.

Structural sensitivity analysis Using (19) and the undam-
aged original FE model, the relative sensitivity is computed
for the first five natural frequencies with respect to the six
substructural damage extents, see Fig. 3. The maximum
value is less than 0.14, and moreover, due to the structural
symmetry, the patterns for substructures 1 and 2 as well as
3 and 4 are exactly the same. As a result, the first five nat-
ural frequencies of the original structure are as a whole not
sensitive enough to be used for damage identification.

An additional mass is added to the structure to increase
the sensitivity with respect to damage parameters. Assume
that mass m is added in the middle of substructure 1 of the
undamaged structure, as shown in Fig. 1 (middle). The mod-
ified structure is symbolically denoted by G1(μ0, m). Given
the additional mass m, the j th natural frequency ωV

j1(μ0, m)

and the j th mode shape ϕV
j1(μ0, m) can be computed using

the FE model of the undamaged structure. Equation (19)
can be then directly used to compute the relative sensitivity

Fig. 3 Two-story plane frame: the relative sensitivity matrix of the
natural frequencies for the original undamaged structure
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ηj11(μ0, m) of the j th natural frequency with respect to the
damage extent μ1 of the first substructure. Figure 4 plots
the relative sensitivities of the first five natural frequen-
cies in dependence on the additional mass m. The figure
clearly illustrates that the additional mass can consider-
ably affect the relative sensitivities (increase or decrease by
almost an order of magnitude). In order to improve the accu-
racy of identification, natural frequencies with high relative
sensitivity can be selected. If 0.2 is used as the threshold
level, then the 2nd, 3rd and 4th natural frequencies can be
picked. However, the sensitivity of the 4th natural frequency
changes rapidly with the additional mass, so that it might
not be stable also for a structure with a different, unknown
damage μ. Figure 5 shows the relative sensitivity matrix for
the undamaged structure with a mass of 3 kg added to the
first substructure, which contains a higher sensitivity with
respect to substructure 1.

The sensitivity analysis is computed based on the FE
model of undamaged structure, which is different from the
real damaged structure. As discussed in Section 3.2.2, the
relationship of the relative sensitivities and the additional
mass in Fig. 4 can provide a reference for selection of the
order j of the natural frequency and the additional mass m,
but the final decision should be taken after considering the
constructed frequency response.

Construction of the frequency response Figure 6 compares
three curves of the acceleration frequency response of the
middle of substructure 1 along the horizontal direction to
the excitation applied in the same Dof, see Fig. 1 (right).
The responses labeled “Original” and “FEM” are computed
by (21) based on the FE models of the original undamaged
structure and the modified structure G1(μ0, 3 kg), respec-
tively; the frequency response labeled “VDM” is computed

Fig. 4 Two-story plane frame: the relative sensitivities ηj11(μ0, m)

with respect to the damage of the first substructure in dependence on
the mass m

Fig. 5 Two-story plane frame: the relative sensitivity matrix of the
natural frequencies for the structure G1(μ0, 3 kg)

by (13) using the frequency response of the original undam-
aged structure (the curve labeled “Original” in Fig. 6). The
curve labeled “VDM” closely follows the curve labeled
“FEM”, which confirms that the frequency response of
the virtual structure can be precisely constructed using the
proposed VDM-based approach.

Section 3.2.2 suggests a relation between pronounced
peaks of the constructed FRF and pronounced peaks of the
relative sensitivities. Thus, Fig. 7 compares the (rescaled
for convenience) constructed frequency response of the con-
sidered modified structure G1(μ0, 3 kg) with the relative
sensitivities ηj11(μ0, 3 kg) of the corresponding natural fre-
quencies with respect to the damage of substructure 1. In
general, the plot confirms the suggested relation between
the high amplitudes of the frequency response and the high
relative sensitivities of the corresponding natural frequen-
cies. The rule is rather heuristic than absolute, but it can

Fig. 6 Two-story plane frame: comparison of the computed and
constructed frequency responses
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Fig. 7 Two-story plane frame: the constructed frequency response and
the relative sensitivities

be used as a source of additional information to facilitate
the process of selecting natural frequencies and additional
masses in damaged structures.

4.1.3 Damage identification

This section illustrates the damage identification procedure
using the proposed method. First, the frequency response of
the virtual structures are constructed using the (simulated)
measured response of damaged structure to hammer exci-
tation. Then, the natural frequencies with high sensitivity
to damage parameters are selected through the sensitivity
analysis and used for damage identification.

Excitation and response A simulated hammer excitation is
applied in the middle of substructure 1 of the damaged
structure, see Fig. 1 (right). The sampling frequency is
10 kHz, and the time interval of 2 s is considered. The simu-
lated excitation lasts 5 ms and models an impact by a modal
hammer, see Fig. 8. In order to simulate a real application,
5 % Gaussian white noise is added to both excitation and
the response. The excitation without noise is applied to the
structure, and the structural responses are computed via the
FE model of damaged structure. The simulated measured

Fig. 8 Two-story plane frame: the simulated measured excitation

Fig. 9 Two-story plane frame: the response to the simulated measured
acceleration

acceleration response of the middle substructure along the
horizontal direction is shown in Fig. 9.

Construction of the FRF To construct the frequency
response of the virtual structure with additional virtual
masses, the Fourier Transform with exponential window
is performed on the noisy simulated measured excitation
and responses. The result is used in (13) to obtain the fre-
quency response of the virtual damaged structure G1(μ, m)

for the virtual mass m ∈ [0, 10] kg. Figure 10 shows
the nephogram of the constructed frequency response with
respect to the virtual mass. The brightness reflects the
amplitude of the frequency response, so that the brightest
points correspond to its peaks, that is to the natural fre-
quencies of the virtual structure. As the mass increases, the
natural frequencies decrease. The constructed nephogram
around the 3rd natural frequency (from 24 Hz to 40 Hz) is
selected from Fig. 8 and shown zoomed in Fig. 11 (top). The
corresponding theoretical nephogram is computed using the
FE model of the virtual damaged structure and shown in

Fig. 10 Two-story plane frame: nephogram of the constructed fre-
quency response of the damaged structure G1(μ, m) in dependence on
the frequency and virtual mass m
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Fig. 11 Two-story plane frame: nephogram of the frequency response,
zoomed to show the 3rd natural frequency: (top) constructed from
noisy simulated measurements; (bottom) exact theoretical

Fig. 11 (bottom). By comparison of both figures, the follow-
ing can be noted:

1. Even if the amplitudes of the natural frequencies are
not same, the natural frequencies corresponding to the
amplitude peaks are almost the same, see Fig. 12, which
plots the 3rd natural frequency of the virtual structure
as a function of the additional mass. The curve “VDM”
is obtained by direct peak-picking using the constructed
frequency response in Fig. 11 (top), while the curve
“FEM” plots the accurate values computed using the
FE model of the virtual damaged structure. The curve
“Original” is computed using the undamaged FE model.

2. For small virtual masses, the discrepancy between the
curves “VDM” and “FEM” are negligible. However, the
error increases with the mass and can affect the identi-
fication results, if the “VDM” curve is directly used for
damage monitoring.

3. The curve “FEM” confirms that the relation between
the natural frequency and the additional mass is smooth,
and that the natural frequency decreases with the mass
increasing in an exponential-like decay.

Fig. 12 Two-story plane frame: the 3rd natural frequency in depen-
dence on the virtual mass

To reduce the influence of errors, an exponential-like
approximation is used to fit the relation between the con-
structed frequency and the additional virtual masses, see
(14). In the considered example, a third-order polynomial is
used in the exponent. The approximation is shown in Fig. 12
(curve “fitting”) and seems to effectively smooth out the
errors of direct peak-picking. If a narrower range of virtual
masses is considered, a polynomial of a lower order can be
often used in the exponent.

Selection of natural frequencies The considered excitation
is applied in the middle of all the six substructures, and
the corresponding acceleration responses are simulated. The
nephograms of the corresponding virtual structures are con-
structed by (13) with respect to the virtual masses added
separately in the middle of the six substructures along

Fig. 13 Two-story plane frame: nephograms of the constructed fre-
quency responses of the six virtual structures



J. Hou et al.

Table 2 Two-story plane
frame: the eight natural
frequencies selected for
damage identification

Case 1 2 3 4 5 6 7 8

Substructure 1 1 2 2 3 4 5 6

Order of natural frequency 2 3 2 3 3 3 3 3

Mass [kg] 3 3 3 3 4 4 3 3

the same direction as the excitations, see Fig. 13. Via the
analysis of these six nephograms and the sensitivity anal-
ysis, eight natural frequencies are selected to be used for
damage identification, see Table 2. For example, Case 1
refers to the 2nd natural frequency of the virtual struc-
ture with a 3 kg virtual mass added to substructure 1.
Figure 14 plots the relative sensitivities of the selected
natural frequencies in dependence on the respectively
placed virtual masses.

Fig. 14 Two-story plane frame: the relative sensitivities of the eight
selected natural frequencies with respect to the respectively placed
virtual masses

The eight selected natural frequencies are computed by
fitting the relation between the picked natural frequency
and the virtual mass, see the column “VDM, approximated”
in Table 3. They are close to the accurate theoretical val-
ues computed using the FE models of the damaged virtual
structures and the exact damage extents (“Damaged vir-
tual structure”). For comparison, the column “Undamaged
virtual structure” lists the same natural frequencies in the
corresponding undamaged virtual structures.

Damage identification Damage is identified by updating
the vector μ to fit the computed natural frequencies to the
approximated ones, see (22). The update rule (26) uses the
Jacobi matrix J(μ), which contains the relative sensitivities
of the selected natural frequencies of the virtual struc-
tures. They are computed using the FE model and shown
in Fig. 15. Compared to Fig. 3, it is a diagonally domi-
nant matrix with a small condition number of 3.61 only.
Therefore, by utilizing the sensitivities of properly selected
virtual structures, the optimization quickly converges in
only 4 iterations. Figure 16 attests that the damage extents
are identified precisely. The corresponding fitted values of
the natural frequencies (computed using the FE models of
the virtual structures with the identified damage extents)
are listed in the column “Identified virtual structure” of
Table 3.

Table 3 Two-story plane
frame: comparison of the
selected natural frequencies

Case Undamaged virtual Damaged virtual VDM, approximated Identified virtual

structure structure structure

1 17.37 15.43 15.34 15.46

2 33.93 30.61 30.85 30.62

3 17.37 14.00 14.12 14.05

4 33.93 25.46 25.59 25.54

5 28.68 25.62 25.83 25.75

6 28.68 25.74 25.94 25.72

7 25.92 20.23 20.02 19.96

8 23.13 22.21 22.25 22.19
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Fig. 15 Two-story plane frame: the relative sensitivity matrix of the
eight selected natural frequencies

For comparison purposes, a standard optimization is also
performed using natural frequencies of the global structure
(with no virtual masses) and the standard Matlab implemen-
tation of a genetic algorithm (GA). During the optimization,
the first 8 natural frequencies (with 2 % errors) of the
global structure are employed. Two different global minima
are identified in several optimization runs and denoted by
“global 1” and “global 2”, see Fig. 17. The result “global 2”
is precise, while “global 1” is wrong. Therefore, standard
natural frequencies cannot guarantee an accurate identifi-
cation, especially in the considered case of a symmetrical
structure. Here, although the result “global 2” is precise, the
optimization efficiency of GA is not optimistic, especially
for a large complex structure with a large number of dam-
age extents. Comparatively, the proposed method of addi-
tional virtual masses required only four iterations, provided

Fig. 16 Two-story plane frame: damage extents in successive
iterations

Fig. 17 Two-story plane frame: comparison of the identification
results of a standard approach (“global 1” and “global 2”) and the
proposed approach (“VDM”) with the actual damages (“actual”)

accurate results and utilized natural frequencies of a sig-
nificantly lower order. To further test the approach, a more
complex structure of a four-story frame model is considered
in the following section.

4.2 Four-story frame model

Figure 18 shows a four-story frame model, which consists of
12 columns and 8 beams. It is divided into 20 substructures,
and each member is a substructure. Their assumed damages
extents are shown in Fig. 19 (“actual”). Excitations are sepa-
rately applied in the middle positions of all the substructures
and are measured together with the corresponding simu-
lated accelerations, both contaminated with 5 % Gaussian
white noise. Then the corresponding 20 nephograms of
the constructed frequency responses are computed. Via the

1 2 
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16 
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10 11 

17 

19 
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18 

20 

Fig. 18 A four-story plane frame model
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Fig. 19 Four-story plane frame:
identified damage extents

nephograms and the sensitivity analysis, the additional vir-
tual masses and natural frequencies are determined and
listed in Table 4 in the columns “mass” and “VDM, approx-
imated”. The constructed values are very close to those
computed from the damaged FE model (“Damaged virtual
structure”). The damage extents are identified quickly and
accurately in only 4 iterations, see Fig. 19. The natural
frequencies of the updated virtual structures are shown in
Table 4 in the column “Identified virtual structure”. The
accuracy of the estimated natural frequencies and dam-
age extents confirms the effectiveness of the proposed
method.

5 Conclusion

This paper proposes an effective method for structural dam-
age identification by constructing virtual structures with
additional virtual masses. The virtual structures are con-
structed in order to increase their sensitivity with respect to
the considered damage parameters. A plane frame model is
employed to test the method. The most important features
can be summarized as follows:

1. The virtual structures are united together and all
their natural frequencies with high sensitivity are

Table 4 Four-story plane
frame: comparison of the
virtual natural frequencies

Substructure Order Mass [kg] Damaged virtual VDM, approximated Identified virtual

structure structure

1 5 3 31.90 32.25 31.89

2 5 3 26.11 26.22 26.15

3 5 3 29.42 29.25 29.20

4 5 3 29.18 29.25 29.15

5 5 3 28.76 29.01 28.76

6 5 3 28.93 28.97 28.85

7 5 3 25.55 25.85 25.78

8 5 3 26.53 26.80 26.69

9 5 3 29.09 29.22 29.02

10 5 3 24.91 25.05 24.97

11 5 2.5 22.84 23.13 23.05

12 5 2.5 28.97 28.87 28.72

13 5 2.5 27.84 28.00 27.82

14 5 3 22.21 22.11 22.08

15 5 3 25.57 25.54 25.50

16 5 3 23.51 23.44 23.39

17 5 3 24.67 25.12 24.73

18 5 3 25.48 25.68 25.46

19 5 1.5 24.19 24.53 24.47

20 5 2.5 24.40 24.60 24.38
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collected into a single sensitivity matrix which is a well-
conditioned diagonally dominant matrix. As a result,
the optimization is quickly convergent.

2. Damage identification is performed using only lower-
order natural frequencies, which can be reliably
obtained from measurements.

3. The mass is added to the structure virtually (numeri-
cally): the practical difficulties of adding a real mass to
the structure are thus avoided.

4. Damage identification of global structure requires only
two sensors: one excitation sensor and one acceleration
sensor, which are sequentially used for constructing all
the considered virtual structures one by one. Therefore,
the experimental costs can be significantly reduced.

In the proposed method, the number of identified natu-
ral frequencies used for damage identification is in direct
proportion to the number of measurements. No matter how
large the structure is, if the testing time is long enough, a
virtual mass can be added to each member and the collected
modal information will be enough for damage identifica-
tion. However, if the number of the unknown parameters
is very large, it might not be easy to use the method due
to practical limitations of a real application. Testing all the
members in a large structure is rarely feasible: it is very
time-consuming and some members might not be physically
accessible for measurement.
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