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This paper presents a methodology for the inverse characterization of sound absorbing rigid

porous media, based on standard measurements of the surface acoustic impedance of a porous

sample. The model parameters need to be normalized to have a robust identification procedure

which fits the model-predicted impedance curves with the measured ones. Such a normalization

provides a substitute set of dimensionless (normalized) parameters unambiguously related to the

original model parameters. Moreover, two scaling frequencies are introduced, however, they are

not additional parameters and for different, yet reasonable, assumptions of their values, the identi-

fication procedure should eventually lead to the same solution. The proposed identification tech-

nique uses measured and computed impedance curves for a porous sample not only in the

standard configuration, that is, set to the rigid termination piston in an impedance tube, but

also with air gaps of known thicknesses between the sample and the piston. Therefore, all neces-

sary analytical formulas for sound propagation in double-layered media are provided. The meth-

odology is illustrated by one numerical test and by two examples based on the experimental

measurements of the acoustic impedance and absorption of porous ceramic samples of different

thicknesses and a sample of polyurethane foam. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4919806]

[OU] Pages: 3232–3243

I. INTRODUCTION

The energy of acoustic waves penetrating into porous

media filled with air (or other fluid) is usually very well

dissipated by the viscous and thermal interactions of the

pore-fluid with the solid frame/skeleton. For many materials

with open porosity and a sufficiently rigid frame, only the

propagation in the pore-fluid needs to be considered to

model this phenomenon. A typical approach is then to substi-

tute such a rigid porous medium with an equivalent

dispersive fluid characterized by the complex and frequency-

dependent effective bulk modulus and density. There are, in

fact, many models of that sort which have been proposed for

various materials. The simplest of them are purely empirical

and involve only a couple of parameters, such as, for exam-

ple, the flow resistivity, in the models of Delany and Bazley1

with important generalizations proposed by Miki,2,3 which

are valid for fibrous absorbent materials of very high poros-

ity (originally they were proposed and validated for fibrous

materials with porosity close to unity). More complicated

models are less restrictive, yet they involve more parameters

related to the average pore geometry. Thus, for example,

Attenborough4 proposed a model for rigid fibrous absorbents

and granular materials using five parameters: porosity, flow

resistivity, tortuosity, a steady flow shape factor, and a

dynamic shape factor. More recently, new empirical models

for fibrous materials have been proposed by Voronina,5 and

for granular media by Voronina and Horoshenkov.6

A general semi-phenomenological model for sound

absorbing porous media with rigid frames was originally for-

mulated by Johnson et al.7 and substantially extended later

by Champoux and Allard,8 and by Lafarge et al.9 to include

thermal losses in the porous medium. Other important

improvements were introduced by Pride et al.10 It is a versa-

tile model, based on a set of independently measurable po-

rous material parameters. It is essentially formulated in the

frequency domain, although recently time-domain formula-

tions have been proposed (see, for example, a time-domain

formulation without any restrictions on the frequency bands

by Umnova and Turo11). In its standard version,12 which

may be referred to as the Johnson–Champoux–Allard–

Lafarge (JCAL) model,13 it uses six parameters: the total

open porosity, the high frequency limit of the tortuosity (i.e.,

the classic parameter of tortuosity), the static viscous perme-

ability (originally, the static air flow resistivity), the static

thermal permeability, and two characteristic lengths—a vis-

cous one and a thermal one. A slightly simplified version

does not use the thermal permeability parameter and is usu-

ally called the Johnson–Champoux–Allard (JCA) model.

One the other hand, the enhanced eight-parameter version,

which may be referred to as the Johnson–Champoux–

Allard–Pride–Lafarge (JCAPL) model,13 also involves the

static viscous and thermal tortuosities, which are, in fact, the

low-frequency limits of their dynamic counterparts. As in

most of the other models of porous media, there are also

additional parameters representing some of the properties of

the fluid in the pores, which are usually well-known. The

JCA, JCAL, or JCAPL model is often simply called the

Johnson–Allard model. Its importance is also confirmed bya)Electronic mail: tzielins@ippt.pan.pl
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the fact that, together with all parameters, the

Johnson–Allard formulas are present in the Biot–Allard

model for poroelastic media,12 which is essentially based on

Biot’s equations of poroelasticity instead of the Helmholtz

equation for time-harmonic acoustics. The poroelastic model

for sound absorbing media must be used when the vibrations

of the solid frame cannot be neglected, for example, in the

case of soft porous media or in active systems involving

porous materials.14–16

The essential parameters of the Johnson–Allard (JCA,

JCAL, or JCAPL) and Biot–Allard models which result from

the micro-geometry of the solid frame are in fact some sort

of macroscopic, average geometric characteristics of the po-

rous medium derived on the basis of homogenization theory.

Although, they can be measured directly (see, for example,

Refs. 17–20), specific measurement equipment is required

for each one of them. This is an important reason for devel-

oping inverse methods of parametric identification based on

acoustical measurements carried out by a single type of

equipment.

The inverse characterization of porous media based on

acoustical measurements has been investigated for various

models and parameters. Braccesi and Bracciali21 applied a

least squares regression based on measured reflection coeffi-

cient values of sound absorbing porous specimens to

estimate reliable values for the flow resistivity and structure

factors used as parameters by an early model proposed

by Zwikker and Kosten.22 Alba et al.23 applied an inverse

identification method to obtain the porosity, fiber diameter,

and density of fibrous sound absorbing materials using the

Voronina model.5,24 Fellah et al.25 used reflected and trans-

mitted ultrasonic waves in air-saturated industrial plastic

foams in order to identify their porosity, tortuosity, and char-

acteristic lengths. They applied the least squares method to

numerically solve the inverse problem defined in the time

domain. G€oransson et al.26 proposed a methodology for the

inverse estimation of the anisotropic flow resistivity through

porous materials. This methodology was then refined by Van

der Kelen and G€oransson,27 who applied it to identify the

full anisotropic flow resistivity tensor of multiple glass wool

and melamine foam samples.

An inverse identification of some parameters governing

viscous dissipation in porous media was essayed by

Panneton and Olny,28 who showed that when the open poros-

ity and static airflow resistivity are known from direct meas-

urements, and the dynamic density is obtained from

acoustical techniques involving an impedance tube, the ana-

lytical solutions derived from the Johnson et al.7 model yield

the geometrical tortuosity and viscous characteristic length.

Olny and Panneton29 also proposed a method for the inverse

acoustical determination of the parameters governing ther-

mal dissipation in porous media. Their approach is based on

the measurement of the dynamic bulk modulus of the mate-

rial (using a three-microphone method), and the analytical

inverse solutions derived from three different semi-

phenomenological models governing the thermal dissipation

of the acoustic waves in porous media. In all three cases,

knowledge (i.e., a direct measurement) of the open porosity

was assumed, and the inverse method was used to determine

one or two of the remaining model parameters: for example,

the thermal characteristic length and thermal permeability.

An ultrasonic characterization of homogeneous rigid po-

rous materials based on the JCA model was proposed by

Groby et al.30 The same model was used in inverse charac-

terization by Dauchez and Yvars.31 A good review on the

inversion problems for determining parameters of porous

materials has been recently published by Bonfiglio et al.32

Acoustical measurements in an impedance or standing wave

tube were used to identify the parameters of the JCAL model

by Sellen et al.,33 and also by Atalla and Panneton34 for the

JCA model. In that latter paper, the inverse characterization

is applied only for three parameters, namely, the tortuosity

and two characteristic lengths, which means that the open

porosity, airflow resistivity, and bulk modulus must be meas-

ured with direct methods. In that paper, only the standard

configuration of a porous sample set directly to the rigid

termination in the tube was used. Moreover, no direct param-

eter normalization was applied. Such a normalization, suita-

ble for the inverse identification of the JCAL model

parameters, has been recently proposed by Zieli�nski35 in an

approach which assumes that the open porosity is known.

The present paper is an extension and continuation of confer-

ence reports by Zieli�nski,35,36 and it provides complete dis-

cussions as well as some new results. Here, the proposed

methodology involves measuring of the surface acoustic im-

pedance of porous samples in an impedance tube with air

gaps (of known thicknesses) between the sample and the

rigid termination of tube. This paper is organized as follows.

First, the necessary formulas of the JCAL and JCAPL mod-

els are recalled. Then, the analytical solutions for plane

harmonic wave propagation in double- and single-layered

media are derived, together with formulas for the surface

acoustic impedance and absorption coefficient. These formu-

las are used by the inverse identification procedure, applying

the least squares method to a set of normalized dimension-

less parameters proposed for the JCAL and JCAPL models.

The procedure is illustrated by one test based on a numerical

experiment (with synthetic data implying non-trivial identifi-

cation37) and by the validated parametric identification of an

open-porosity alumina foam based on measurements of

two samples (of different thicknesses) carried out in an

impedance tube, and finally, by another test based on the

impedance-tube measurements of a polyurethane foam.

II. MODELING THE ACOUSTIC IMPEDANCE AND
ABSORPTION OF POROUS MATERIALS

A. Sound propagation in porous media with a rigid
frame

When the skeleton of a porous material can be regarded

as rigid and motionless, which is common in materials like

ceramic or metal foams and even for many softer (PU)

foams, the time-harmonic acoustic wave propagation in such

media can be effectively modeled as in fluids by using the

classical Helmholtz equation of linear acoustics. In fact, a

layer of the rigid porous material is then substituted by an

effective fluid layer characterized by the effective speed of

sound c and density ., which should differ from the speed of
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sound of the fluid in the pores (typically, air), even for mate-

rials of very high porosity (which is usually the case for

soundproofing materials). In consequence, the effective bulk

modulus K is also introduced since c2 ¼ K=.. Moreover, it

is observed that porous materials are dispersive, therefore,

the effective quantities should be frequency-dependent

functions, namely, c ¼ cðxÞ, . ¼ .ðxÞ, and K ¼ KðxÞ (here

and below, x ¼ 2pf is the angular frequency, f is the

frequency).

The effective density of a porous material is related to

the density .f of the actual fluid filling the pores

. xð Þ ¼ .fa xð Þ
/

; (1)

where / is the open porosity and a is a dimensionless func-

tion of frequency, the so-called dynamic (visco-inertial) tor-

tuosity. Johnson et al.7 proposed a model for the dynamic

tortuosity, which (apart from the kinematic viscosity, �f , of

the fluid in the pores) depends on four geometric parameters

that macroscopically characterize a porous medium, namely,

the open porosity, /, the (static) permeability, k0, the tortu-

osity of the pores, a1, and finally, the characteristic size of

the pores for the viscous forces, K. The static permeability is

an intrinsic property of a porous medium, used, for example,

in Darcy’s law, where it relates the pressure gradient and the

flux, which, when divided by the total porosity, is equal to

the (average, macroscopic) velocity of stationary-flow

(therefore, at x ¼ 0). The tortuosity a1 is defined as the

ratio of the hypothetical effective density of a porous me-

dium saturated by an ideal, inviscid fluid, to the density of

this fluid. Therefore, it takes into account only the inertial

resistance, and in reality, when the saturating fluid is viscous,

the effective density must only approach the value a1.f=/
when the viscous skin depth tends to zero and the viscosity

effects become negligible, that is, when x!1. Johnson’s

model was modified by Pride et al.,10 and the improved ver-

sion can be presented as follows:

a xð Þ ¼ a1 þ
�f

ix
/
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
�f

2a1k0

K/

� �2

þ b2

s
� bþ 1

2
4

3
5;

(2)

where b is a parameter introduced by Pride to adjust the

low-frequency limit of the real part of the effective den-

sity (for circular pores, this limit is obtained at b ¼ 3=4).

Lafarge showed that the right low-frequency limit a0 for

the real part of a (i.e., limx!0Rea ¼ a0) is achieved

when

b ¼ 2a2
1k0

K2/ a0 � a1ð Þ
: (3)

An analysis of thermal effects leads to the following

expression for the effective bulk modulus:

K xð Þ ¼ Kf

/b xð Þ ; b xð Þ ¼ cf �
cf � 1

a0 xð Þ ; (4)

where Kf ¼ cfPf is the bulk modulus of the pore-fluid (Pf is

the ambient mean pressure), cf is the heat capacity ratio for

the pore-fluid, and a0 is the frequency-dependent thermal tor-

tuosity. This function was introduced by Lafarge et al.9 as an

analog of the dynamic tortuosity. Similarly, the following

model was proposed for this quantity:

a0 xð Þ¼ 1þ�
0
f

ix
/
k00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
�0f

2k00
K0/

� �2

þb02

s
�b0 þ1

2
4

3
5; (5)

where �0f ¼ �f=Nf , with Nf being the Prandtl number of the

pore-fluid, while k00 is the static thermal permeability, K0 is

the characteristic size of the pores for thermal effects, and

finally b0 is a parameter which can provide minor modifica-

tions of the effective bulk modulus in the low- and medium-

frequency range; the low-frequency limit a00 for the real part

of a0 (i.e., limx!0Rea0 ¼ a00) is achieved when

b0 ¼ 2k00

K0
2
/ a00 � 1ð Þ

: (6)

Equations (1) and (4), together with the expressions (2)

and (5), constitute a very effective model for sound propa-

gation in porous media with a rigid frame (in fact, the

JCAPL model). This model involves eight parameters

which, in different ways, depend on the micro-geometry of

the porous material (being, in fact, its average macroscopic

properties); they are /, a1, k0, k00, K, K0, b (or a0), and b0

(or a00). However, by choosing to put b ¼ 1, or in conse-

quence, a0 ¼ a1 þ ð2a2
1k0=K

2/Þ, the simplified (original)

Johnson’s model7 for dynamic tortuosity is achieved. A sim-

ilar simplification can be done for the model of Lafarge

et al.9 for thermal tortuosity by assuming that b0 ¼ 1, or

a00 ¼ 1þ ð2k00=K
02/Þ, thus, neglecting the possibility of

some minor modifications in the low- and medium-

frequency range. Eventually, a simplified version, i.e., the

JCAL model, which involves only six geometrical parame-

ters (/, a1, k0, k00, K, and K0), can be written as follows:

a xð Þ ¼ a1 þ
�f

ix
/
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
�f

2a1k0

K/

� �2

þ 1

s
;

a0 xð Þ ¼ 1þ �
0
f

ix
/
k00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
�0f

2k00
K0/

� �2

þ 1

s
: (7)

B. Surface impedance and acoustic absorption
coefficient for double- and single-layered media

Figure 1 shows the configuration of a double-layered

medium of thickness ‘, set on a rigid wall and composed of

an inner layer 1 with thickness ‘1 ¼ n‘, where n 2 ð0; 1Þ,
and an outer layer 2 with thickness ‘2 ¼ ð1� nÞ‘. The den-

sities of the materials of these layers are .1 and .2, respec-

tively. In general, these materials may be porous with open

porosities /1 for the inner layer, and /2 for the outer one.

These porosities will be used in the formulas derived below,

although in further considerations the layer 1 will be an air
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gap, which means that its porosity should be simply set to 1.

A plane harmonic acoustic wave propagates in the fluid (i.e.,

the air, which also fills the pores in both layers) and pene-

trates at normal incidence into the double-layered medium.

It passes both layers, and (provided that the two materials

are different) it is partially reflected at the interface between

the layers, and finally, it is fully reflected by the rigid wall.

A standing-wave interference pattern results due to the

superposition of forward- and backward-traveling waves. By

measuring the sound pressure at two fixed locations outside

the medium, it is possible to determine important acoustical

characteristics of the two-layered arrangement, namely, the

complex-valued normal acoustic impedance and reflection

coefficient, and the real-valued sound absorption coefficient.

Assuming that the speed of sound (and therefore, the

wave numbers) and the density in both materials are known,

plane wave propagation in a double-layered medium is gov-

erned by the system of two Helmholtz equations, each valid

for one of the two layers and coupled with the other equation

only at the interface where the amplitudes of the pressure

and velocity flux for both layers must be equal. This linear

system of equations can be solved analytically.

Thus, the (complex amplitudes of) acoustic pressure and

particle velocity in layer 1, that is, for x 2 ½0; n‘�, are in fact

given by the following formulas:

pð1ÞðxÞ ¼ A
ð1Þ
1 e�ik1x þ A

ð1Þ
2 eik1x; (8)

v 1ð Þ xð Þ ¼ k1

x.1

A 1ð Þ
1 e�ik1x � A 1ð Þ

2 eik1x
� �

; (9)

where k1 is the wave number in the medium of layer 1, while

A
ð1Þ
1 and A

ð1Þ
2 are the (unknown) complex amplitudes of the

incident and reflected pressure waves, respectively. Similarly,

the wave number in medium 2 is denoted by k2, the

(unknown) pressure amplitudes of the incident and reflected

waves in layer 2 are denoted by A
ð2Þ
1 and A

ð2Þ
2 , respectively,

and the formulas for acoustic pressure and particle velocity are

pð2ÞðxÞ ¼ A
ð2Þ
1 e�ik2x þ A

ð2Þ
2 eik2x; (10)

v 2ð Þ xð Þ ¼ k2

x.2

A 2ð Þ
1 e�ik2x � A 2ð Þ

2 eik2x
� �

; (11)

for x 2 ½n‘; ‘�. In the case of porous layers vð1Þ and vð2Þ are in

fact the effective velocity fluxes, so that the real fluid veloc-

ity in pores is vð1Þ=/1 or vð2Þ=/2, respectively.

In the proposed approach, the first layer will be the air

gap so that /1 ¼ 1, .1 ¼ .f , and k1 ¼ x=cf , where .f and cf

are the density of air and the speed of sound in air, respec-

tively. The second layer will be a layer of porous material

with open porosity /2 ¼ / 2 ð0; 1Þ filled with air.

Moreover, for this layer .2 ¼ .ðxÞ and k2 ¼ x=cðxÞ, where

the effective density .ðxÞ and the effective speed of sound

cðxÞ for the porous material are not real-valued constants,

but are complex frequency-dependent characteristics defined

by the formulas presented in Sec. II A.

The unknown amplitudes of the pressure waves are

derived by applying the boundary and interface conditions,

namely,

• the zero normal velocity at the rigid wall, i.e., at x ¼ 0:

vð1Þð0Þ ¼ 0;
• the pressure and velocity flux continuity at the interface

between two layers, i.e., at x ¼ n‘: pð1Þðn‘Þ ¼ pð2Þðn‘Þ and

vð1Þðn‘Þ ¼ vð2Þðn‘Þ;
• the pressure boundary condition at the free surface, i.e., at

x ¼ ‘: pð2Þð‘Þ ¼ p̂, where p̂ is the acoustic pressure ampli-

tude of the incident plane harmonic wave penetrating the

two-layered medium.

Eventually, after introducing the following notations:

j1 ¼ ik1‘; j2 ¼ ik2‘;

B1 ¼ k2/1.1þ k1/2.2; B2 ¼ k2/1.1� k1/2.2; (12)

the expressions for complex amplitudes are

A 1ð Þ
1 ¼ A 2ð Þ

2 ¼ p̂
B1 þ B2ð Þenj1þ 1þnð Þj2

A0

; (13)

A 2ð Þ
1 ¼ p̂

B1e 1þ2nð Þj2 þ B2e2nj1þ 1þ2nð Þj2

A0

; (14)

A 2ð Þ
2 ¼ p̂

B1e2nj1þj2 þ B2ej2

A0

; (15)

where the denominator equals

A0 ¼ B1ðe2nj2 þ e2ðnj1þj2ÞÞþB2ðe2j2 þ e2nðj1þj2ÞÞ: (16)

Now, the surface acoustic impedance at the free surface

of two-layered medium, i.e., at x ¼ ‘, can be computed as

Z ¼ p 2ð Þ ‘ð Þ
�v 2ð Þ ‘ð Þ

¼ x.2

k2

�A 2ð Þ
1

p̂
e�ik2‘ þ A 2ð Þ

2

p̂
eik2‘

" #�1

; (17)

where pð2Þð‘Þ ¼ p̂ and the coefficients A
ð2Þ
1 =p̂ and A

ð2Þ
2 =p̂

are calculated from the formulas derived above, and it

should be noted that the surface impedance ZðxÞ is a

complex-valued frequency-dependent characteristics

which actually does not depend on the excitation pressure

amplitude p̂.

When there is no air gap (or inner layer), and a single

porous layer of thickness ‘ is set directly on the rigid wall

(that is, for n ¼ 0, ‘1 ¼ 0, and ‘2 ¼ ‘), the whole problem is

simplified. This is in fact a typical configuration used in

FIG. 1. (Color online) A two-layered medium: A layer of porous material

with an air gap (or another material) close to the rigid wall.
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standard material testing. Then, the surface acoustic imped-

ance of single porous layer is

Z ¼ .c
exp 2ix‘=cð Þ þ 1

exp 2ix‘=cð Þ � 1
¼ �i.ccot

x‘
c

� �

¼ � iZf

/

ffiffiffi
a
b

r
cot

x‘
cf

ffiffiffiffiffiffi
ab

p� �
; (18)

where Zf ¼ .fcf is the characteristic impedance of the fluid

(air) in the pores and outside the porous medium, and the

frequency-dependent functions aðxÞ and bðxÞ [or the effec-

tive quantities .ðxÞ and cðxÞ] are computed using formulas

from Sec. II A.

Whatever the case, when the surface acoustic imped-

ance of a two-layered (17) or single-layer medium (18) is

known, the complex-valued reflection coefficient R and the

real-valued acoustic absorption coefficient A can be calcu-

lated12,16 as

R xð Þ ¼ Z xð Þ � Zf

Z xð Þ þ Zf

; A xð Þ ¼ 1� jR xð Þj2: (19)

The surface acoustic impedance (17) or (18), as well as

the reflection and absorption coefficients (19) can be deter-

mined experimentally in an impedance tube in some fre-

quency range (which depends on the size of the sample and

the tube), using the so-called two-microphone transfer func-

tion method.38–40

III. PROCEDURE FOR INVERSE PARAMETRIC
IDENTIFICATION OF RIGID PORO-ACOUSTICAL
MODEL

A. A normalized set of dimensionless parameters

A method for the parameter identification for the rigid-

porous model, based on some acoustical measurements, will

now be presented. For this purpose, a set of six dimension-

less parameters, which are in an unequivocal relation with

the JCAL model parameters and should render the optimiza-

tion algorithm robust, is proposed as follows:

p0 ¼ /; p1 ¼ a1 � 1; p2 ¼
�f

x�

/
k0

; p3 ¼
�0f
x0�

/
k00
;

p4 ¼
x�
�f

2a1k0

K/

� �2

; p5 ¼
x0�
�0f

2k00
K0/

� �2

; (20)

with two additional dimensionless parameters in the case of

the JCAPL model,

p6 ¼ b ¼ 2a2
1k0

K2/ a0 � a1ð Þ
; p7 ¼ b0 ¼ 2k00

K02/ a00 � 1ð Þ
:

(21)

Here, the definitions of the parameters p2;…; p5 involve the

angular frequencies x� ¼ 2pf� and x0� ¼ 2pf 0�, where f�
and f 0� are some arbitrarily chosen scaling (normalizing) fre-

quencies for viscous and thermal dissipation effects, respec-

tively. They may be related to the critical frequencies

delimiting the low- and high-frequency regimes of viscous

and thermal effects. It is important to emphasize that the

scaling frequencies are not additional parameters since they

can be chosen quite arbitrarily, and for various choices, the

same results for the model parameters should be obtained,35

although the corresponding sets of the scaled dimensionless

parameters will be obviously different. Nevertheless, reason-

able values for these frequencies must be used (see examples

in this work) in order to make the identification procedure

successful. As a matter of fact, the scaling frequencies allow

properly normalizing the vector of dimensionless parame-

ters. The main purpose is that for the same initial value (typi-

cally 1) used for those parameters by the optimization

procedure, when the identification is completed, the found

values of the dimensionless parameters should be of more or

less similar order.

Now, the formulas for the dynamic viscous and thermal

tortuosities, a and a0, can be rewritten in the following form:

a xð Þ ¼ 1þ p1 þ
x�
ix

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
x�

p4 þ p2
6

r
� p6 þ 1

" #
;

a0 xð Þ ¼ 1þ x0�
ix

p3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
x0�

p5 þ p2
7

r
� p7 þ 1

" #
: (22)

It should be observed that the dimensionless parameter p0 is

not present in these formulas. It is actually the total open po-

rosity parameter /, which in the model formulas for the

dynamic tortuosities (2) and (5), or (7) (as well as in the defi-

nitions for parameters p2;…; p7), appears always in rational

relation with the permeabilities k0 or k00. Nevertheless, the

parameter p0 ¼ / must be included in the proposed set of

identifiable parameters, because the porosity occurs inde-

pendently (of k0 and k00) in the formulas for surface imped-

ance (17) or (18) which will be used by the identification

procedure.

After the dimensionless parameters have been found,

the model parameters can be calculated as follows:

/ ¼ p0; a1 ¼ 1þ p1; k0 ¼
�f

x�

/
p2

; k00 ¼
�0f
x0�

/
p3

;

K ¼ 2þ 2p1

p2

ffiffiffiffiffiffiffiffiffiffiffiffi
�f

x�p4

;

r
K0 ¼ 2

p3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0f

x0�p5

;

s
(23)

and furthermore, for the JCAPL version of the model,

a0 ¼ 1þ p1 þ
p2p4

2p6

; a00 ¼ 1þ p3p5

2p7

: (24)

In the case of the JCAL model (7), only six dimension-

less parameters (20) [and so only six model parameters (23)]

need to be identified (since p6 ¼ b ¼ 1 and p7 ¼ b0 ¼ 1) and

in that case the formulas for the dynamic tortuosities are

a xð Þ ¼ 1þ p1 þ
x�
ix

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
x�

p4 þ 1

r
;

a0 xð Þ ¼ 1þ x0�
ix

p3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
x0�

p5 þ 1

r
: (25)
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B. The objective function and identification procedure

Over some frequency range, the surface impedance of a

sample of porous material of known thickness is measured in

an impedance tube. As a matter of fact, a few measurements

are carried out for the same sample set directly on the rigid

termination in the tube and with air gaps of various (known)

thicknesses between the sample and the rigid termination.

The objective function is defined as the sum of squared

measures of the difference between the experimental curves

(i.e., the real and imaginary parts of the measured surface

impedances) and their analytical analogs computed from the

model discussed above, with some assumed values for the

dimensionless parameters, namely,

FðpÞ ¼
X

m

X
x

jZmðx; pÞ � Z exp
m ðxÞj2

¼
X

m

X
x

½ðReZmðx; pÞ � ReZ exp
m ðxÞÞ2

þ ðImZmðx; pÞ � ImZ exp
m ðxÞÞ2�: (26)

Here, p is the vector of dimensionless parameters with six

components defined by Eq. (20)—in the case of the standard

JCAL model—or with eight components defined by formu-

las (20) and (21)—in the case of the enhanced JCAPL

model; Z exp
m ðxÞ is the acoustic impedance measured at fre-

quency x for the measurement case m, and Zmðx; pÞ is its

computed counterpart; the summation (
P

x) is carried out

over the discrete set of measurement/computational frequen-

cies x (from the relevant frequency range), as well as over

all the measurement cases (
P

m) with various known air

gaps (or with the sample set directly on the rigid termina-

tion). The acoustic impedance values are computed using

formulas (17) or (18) with / substituted by p0 and the porous

layer effective quantities .ðx; pÞ and cðx; pÞ calculated

from the model formulas where the viscous and thermal tor-

tuosities are determined with respect to the dimensionless

parameters, that is, from Eq. (25) for the JCAL case, or Eq.

(22) in the JCAPL case. The analytical formulas for the gra-

dient of the objective function with respect to the parameters

p can be derived (see the Appendix) to be used by minimiza-

tion procedures.

During the identification procedure, the objective func-

tion is minimized with respect to the dimensionless parame-

ters p. It is required that all the parameters are positive,

however, some additional constraints may be imposed. For

example, it is known that thermal dissipation effects are asso-

ciated with the so-called thermal skin depth, which tends to

be bigger than the viscous skin depth corresponding to the vis-

cous dissipation effects. Thus, the thermal effects are rather

associated with the pore size, while the viscous effects are

associated with the size of the “windows” (and small pores)

linking the pores; therefore, in general, the viscous and ther-

mal characteristic lengths should satisfy the relation K6K0.
Similarly, one may always expect that k06 k00, which means

that p36 ðx�=x0�PrÞp2. Nevertheless, the optimization algo-

rithms with (simple) positive-value constraints (or even algo-

rithms without constraints) can be successfully used for the

correct identification of the model parameters, thanks to the

normalization realized by the scaling frequencies. The initial

values for the components of the vector p should be all set to

1, and the reference frequencies, f� and f 0�, may be chosen

with some reasonable freedom (though, f� > f 0�).
Mathematically speaking, the inverse characterization

uses the least squares method: a numerical model is fitted to

experimental data by minimizing a quadratic function of the

differences between the data and their model counterpart.

The modeled problem is of the steady-state kind (its behav-

ior does not depend on any initial conditions and it continues

into the future). An inverse solution exists because the model

function is continuous in its parameters with bounded

domains. Since many experimental curves are suggested to

be used simultaneously in the error minimization, the least

square problem is overdetermined, and it seems that the so-

lution is unique. Thus, the problem is rather well-posed,41

however, the problem’s different sensitivity to various pa-

rameters42 may imply ill-conditioning. An important role in

fitting models to measurements is often played by the

Hessian matrix which contains the second derivatives of the

quadratic objective function.43 In the discussed method, the

formulas for the normalized parameters set at once the con-

ditioning of the fitting-error minimization problem at a better

level, and a good choice of the normalizing frequencies

improves it by reducing the condition number of the Hessian

matrix.

IV. EXAMPLE BASED ON A NUMERICAL EXPERIMENT

The following numerical experiment was carried out.

First, each value from a set of realistic parameters for the

six-parameter JCAL model of a rigid porous medium—listed

in Table I as the original values—was subject to some ran-

dom deviation. As a matter of fact, for each parameter, three

different random deviations were independently effectuated.

The results are presented in Table I as the A-, B-, and C-

deviated values. The average deviated values, computed for

each parameter as the arithmetic mean from the correspond-

ing A-, B-, and C-deviations, are also listed in Table I,

whereas in Fig. 2 the relative difference of each deviated

value from its original is shown. It should be noted that the

A-, B-, and C-deviated values differ from their original

counterparts from by several percent to nearly 20%, how-

ever, the average deviation tends rather to be a few percent

(less than 6%) for each parameter.

The A-, B-, and C-deviated values of the JCAL model

parameters were used in modeling calculations to produce

artificial experimental curves of surface acoustic impedance

TABLE I. Values of transport parameters.

Parameter / a1 k0 k00 K K0

value # [unit] [%] [—] ½10�9 m2� ½10�6 m�

Original 88.00 1.800 0.500 2.000 50.00 180.0

A-deviated 81.63 1.789 0.516 1.823 58.54 173.2

B-deviated 82.79 1.690 0.539 1.914 54.42 158.4

C-deviated 93.50 1.840 0.509 1.920 43.15 213.8

Averaged 85.97 1.760 0.521 1.886 52.04 181.8

Identified 86.06 1.739 0.508 1.840 50.99 197.6
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for three configuration cases of a 30-mm-thick rigid porous

layer: (a) a porous layer described by the A-deviated values

of model parameters set directly to the rigid wall, (b) the po-

rous layer described by the B-deviated values of model pa-

rameters set with a 10-mm-thick air gap to the rigid wall,

and (c) the porous layer described by the C-deviated values

of model parameters set with a 20-mm-thick air gap to the

rigid wall. The results obtained in this way, i.e., from the

deviated values of the parameters, can therefore be consid-

ered as realistic results vitiated by measurement errors or

some imperfections (local inhomogeneities) of real samples.

These impedance curves are plotted in Fig. 3 as curves (b).

For comparison, the curves computed from the original val-

ues of the model parameters, as well as from the averaged-

deviation values, are also shown as curves (a) and (c),

respectively. Nevertheless, one must remember that only

these A-, B-, and C-deviated curves were used by the identi-

fication procedure, which eventually provided the identified

values of the model parameters listed in the bottom line of

Table I. The corresponding impedance curves were also

computed for these identified values, and are presented in

Fig. 3 as curves (d). It is clearly visible that in each case they

are the ones closest to the curves obtained from the

averaged-deviation parameters, although, as mentioned al-

ready above, those latter were not used by the identification

procedure. Nevertheless, the overall differences between the

various corresponding curves are rather small, which illus-

trates the fact that such moderate variations of model param-

eters tend to produce quite similar results.

Figure 4 shows the relative errors for each identified pa-

rameter with respect to its original value and the averaged-

deviation value. The errors with respect to the average-

deviations vary from about 4% to 12%, whereas the errors

with respect to the original values are more dispersed: they

are from about 3% to 17%. One should remember, however,

that for another numerical test of this type (i.e., another set

of random deviations), the errors would be (slightly) differ-

ent. Nevertheless, it was checked that the mean error tend to

be smaller when the identified parameters are compared with

the average-deviation values. Finally, the curves of the

acoustic absorption coefficient computed for all three config-

urations of a porous layer (i.e., with or without air gaps) for

the JCAL model with original, deviated and identified pa-

rameters are presented in Fig. 5. Again, the curves computed

from the identified model are closest to the results calculated

using the parameters with average-deviation (although the

FIG. 2. (Color online) Relative differences of the deviated values of model

parameters from their original values: (a) A-deviation, (b) B-deviation, (c)

C-deviation, (d) average deviation, i.e., the arithmetic mean value from the

corresponding A-, B-, and C-deviated values.

FIG. 3. (Color online) Surface acoustic impedance (its ratio to the character-

istic impedance of air Zf ) of the 30-mm-thick porous layer set directly on

the rigid wall, or with the 10- or 20-mm-thick air gaps between the layer

and the wall, computed for the following values of model parameters (see

Table I): (a) original, (b) A-deviated—for the no-gap case, B-deviated—for

gap 10 mm, or C-deviated—for gap 20 mm, (c) averaged, (d) identified.

FIG. 4. (Color online) Relative errors of the identified parameters with

respect to the corresponding: (a) original values, (b) averaged-deviation

values.
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identification procedure used jointly the A-, B-, and C-

deviated curves of surface acoustic impedance).

V. EXPERIMENTAL VALIDATION OF THE INVERSE
CHARACTERIZATION PROCEDURE

A. Inverse characterization of a ceramic foam

The characterization procedure was applied to two kinds

of porous foams—see Fig. 6. First, it was a ceramic (alumi-

num oxide) foam of a relatively high open porosity.44 It has

been recently reported that such foams have a very complex

micro-geometry and exhibit good sound absorbing proper-

ties.45,46 From two specimens of such foam manufactured

separately, one with a thickness of approximately 24 mm,

the other with a thickness of approximately 18 mm, two cy-

lindrical samples were cut with a diameter of 29 mm (see

Fig. 6) to fit inside an impedance tube well. Both samples

were measured in the tube for their surface acoustic imped-

ance and absorption coefficient in the frequency range from

500 Hz to 6 kHz, using the so-called two-microphone trans-

fer function method.38,47,48 Each of the samples was tested

in five configurations: first, set directly to the rigid piston ter-

mination in the tube, and then with air gaps between the

sample and the rigid termination so that the total thickness

of the two-layered sound absorbing medium was 30, 40, 50,

and 60 mm, respectively.

The impedance curves measured for the thicker sample

were used by the parametric identification algorithm. Their

real and imaginary parts are shown in Fig. 7 (as the ratio to

the characteristic impedance of air Zf) together with the cor-

responding curves calculated after the identification was

accomplished from the analytical JCAL model using the

identified parameters—for the sake of legibility, the results

for only three configurations are presented, namely, for the

case with no gap, and for the total thicknesses of 40 and

60 mm.

The geometric parameters identified by the error-

minimization procedure are listed in Table II and their corre-

sponding dimensionless parameters, obtained by means of

the scaling frequencies f� ¼ 700 Hz and f 0� ¼ 500 Hz, are

shown in Fig. 8. It should be noted that the identified poros-

ity of about 90% is in excellent accordance with the value

declared by the foam manufacturer.44 Finally, some of the

acoustic absorption curves measured in an impedance tube

and computed from the model are presented in Fig. 9 for the

identified porous sample with thickness 24 mm.

For further verification, the parameters identified from

the impedance curves measured for the 24-mm-thick porous

sample were also used to estimate the surface acoustic imped-

ance and absorption for the second sample, of presumably the

same porous ceramics yet with a thickness of 18 mm. In Figs.

10 and 11 these results, calculated for three configurations

with (or without) various air gaps, are compared with the rele-

vant measurements. Here, the discrepancies between the

measured and modeling results are bigger, probably because

of the poor quality of one face of this sample; however, one

FIG. 5. (Color online) Acoustic absorption coefficients for the 30-mm-thick

porous layer set directly on the rigid wall, or with 10- or 20-mm-thick air

gaps between the layer and the wall—see Fig. 3 for the description of curve

denotations.

FIG. 6. (Color online) Two cylindrical porous ceramic (alumina) samples

with diameter 29 mm and thickness (height): (1) 18 mm, (2) 24 mm, and (3)

a sample of PU foam with thickness 26 mm.

FIG. 7. (Color online) Surface acoustic impedance ratio for the 24-mm-thick

porous ceramic sample with or without an air gap to the rigid wall, and the

total thickness (sampleþ gap): (a), (d) equal to the thickness of ceramic

sample, i.e., no gap; (b), (e) 40 mm; (c), (f) 60 mm. The results of the experi-

mental testing [(a)–(c)] and modeling [(d)–(f)] using the identified

parameters.
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should also recall that the samples were cut from two separate

specimens, which had been manufactured independently even

though using the same technology (which involved semi-

manual mixing). Nevertheless, the general agreement between

the corresponding curves is rather good, which essentially val-

idates the identification.

B. Inverse characterization of a polyurethane foam

A polyurethane foam was used for the second test of the

inverse characterization procedure. The sample of PU foam

with thickness 26 mm (see Fig. 6) was measured in the im-

pedance tube in five configurations: set directly on the rigid

termination in the tube or with such air gaps so that the total

thicknesses were 40, 60, 80, and 100 mm. The foam was suf-

ficiently stiff, which justified the rigid-frame assumption and

the characterization procedure based on the JCAL model

was carried out using the surface impedance measurements.

In order to illustrate the effect of the proposed normaliz-

ing frequencies, f� and f 0�, three solutions for the normalized

dimensionless parameters are shown in Fig. 12; they were

obtained for three sets of normalizing frequencies, namely,

(1) for f� ¼ 3 kHz and f 0� ¼ 2 kHz; (2) for f� ¼ 2 kHz and

f 0� ¼ 500 Hz; (3) for f� ¼ 400 Hz and f 0� ¼ 300 Hz. One

should note that the parameters p0 and p1 are, respectively,

the same in all solutions presented in Fig. 12, since they do

not depend on the normalizing frequencies. On the other

hand, the identified values of all other parameters, i.e., p2,

p3, p4, and p5, are different between the solutions, since they

depend on the normalizing frequencies. Another observa-

tion: the most dispersed dimensionless parameters are for

case (1), while the most compact is the dimensionless vector

found for case (3). However, what is important, after using

the formulas for the model parameters (23), the results are

the same, at least up to the three significant figures of each

number, which are presented in the last column of Table III.

Here, the corresponding “initial” values of the model param-

eters are also given, for the all three choices, (1), (2), and

(3), of the normalizing frequencies. Obviously, the identifi-

cation procedure directly identifies only the normalized

parameters p0;…; p5; and the important feature of the

method is that the initial values for all of them is 1.

Therefore, the “initial” values for the model parameters are

TABLE II. Identified values of transport parameters for porous ceramic

sample.

Parameter Symbol Unit Identified value

Total porosity / % 89.75

Tortuosity a1 — 1.234

Viscous permeability k0 10�9m2 2.275

Thermal permeability k00 10�9m2 4.799

Viscous length K 10�6m 51.84

Thermal length K0 10�6m 333.0

FIG. 8. (Color online) Identified values of dimensionless parameters (for

alumina ceramics).

FIG. 9. (Color online) Acoustic absorption coefficient for the 24-mm-thick

porous ceramic sample in various configurations (see caption to Fig. 7). The

results of the experimental testing [(a)–(c)] and modeling [(d)–(f)] using the

identified parameters.

FIG. 10. (Color online) Surface acoustic impedance ratio for the 18 mm-

thick porous ceramic sample in various configurations (see caption to Fig.

7). The results of the experimental testing [(a)–(c)] and modeling [(d)–(f)]

using the parameters identified for the 24-mm-thick sample.
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not used by any minimization procedure, but they are simply

calculated here from the unit values of the normalized pa-

rameters and the chosen normalizing frequencies. Again,

since these frequencies do not affect p0 and p1 which

unequivocally and directly define / and a1, those two

model parameters have the same “initial” values whatever

was the choice for the normalizing frequencies; the other

“initial” values are different. One may observe that the

“initial” value for the viscous length is higher than the

“initial” value of the thermal length, however, their final

identified values are more properly related: the thermal

length is nearly twice as large as the viscous one. When the

“initial” values are compared with the identified ones, case

(3) has the closest results, whereas the largest differences are

for case (1). One may conclude that a better choice of the

normalizing frequencies puts the unit initial values of the

dimensionless parameters closer to the values which render

the minimum of the objective function.

The Hessian matrix of the objective function was com-

puted for three identified vectors of normalized parameters.

In accordance with the previous observations, it was found

that the conditioned number of the Hessian matrix computed

in case (3) was 36 times smaller than for the worst normal-

ization case (1). Thus, one may conclude that a better choice

of normalizing frequencies improves the conditioning of the

Hessian matrix of the objective function. Nevertheless, for

this PU foam the inverse characterization procedure was

very stable: the same results were obtained whatever the

choice of normalizing frequencies. Figure 13 compares the

acoustic absorption curves obtained from some measure-

ments in the impedance tube with the corresponding curves

calculated from the identified model parameters—the dis-

crepancies are very small.

The identified value of high porosity (see Table III) is typi-

cal for open-cell PU foams. Also typical is the identified viscous

permeability (see Refs. 49 and 50), which sets the value of the

air flow resistivity to 3871 Pa s=m2 (the air flow resistivity for

open-cell PU foams varies with their density, but is in the region

of 2000 to 8000 Pa s=m2 for the densities of 20 to 60 kg=m3).

VI. CONCLUSIONS

A methodology for inverse parametric identification of

rigid porous media on the basis of surface acoustic imped-

ance measurements was discussed. The identification proce-

dure applies the least squares method to fit the measurement

curves with the results calculated analytically from the

FIG. 11. (Color online) Acoustic absorption coefficient for the 18 mm-thick

porous ceramic sample in various configurations (see caption to Fig. 7). The

results of the experimental testing [(a)–(c)] and modeling [(d)–(f)] using the

parameters identified for the 24-mm-thick sample.

FIG. 12. (Color online) Identified values of dimensionless parameters for

the PU sample: three cases for various normalizing frequencies.

TABLE III. “Initial” and identified values of transport parameters for PU

foam.

Parameter Symbol Unit

“Initial” value

Identified(1) (2) (3)

Total porosity / % 100 100 100 99.3

Tortuosity a1 — 2.00 2.00 2.00 1.07

Viscous permeability k0 10�9 m2 0.82 1.24 4.94 4.72

Thermal permeability k00 10�9 m2 1.74 3.48 8.70 11.1

Viscous length K 10�6 m 115 141 281 240

Thermal length K0 10�6 m 83 118 187 449

FIG. 13. (Color online) Acoustic absorption coefficient for the 26-mm-thick

PU foam sample with or without an air gap to the rigid wall, and the total

thickness (sampleþ gap): (a), (d) equal to the thickness of PU sample, i.e.,

no gap; (b), (e) 40 mm; (c), (f) 60 mm. The results of the experimental test-

ing [(a)–(c)] and modeling [(d)–(f)] using the identified parameters.
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Johnson–Allard models.12 In this way, important transport

parameters may be simultaneously identified, in particular:

the open porosity, tortuosity, viscous and thermal permeabil-

ities, and two characteristic lengths. However, these model

parameters are not directly sought for; instead, the identifica-

tion algorithm minimizes the discrepancy between the exper-

imental and analytical results with respect to a set of

normalized dimensionless parameters, which are in unequiv-

ocal relation to the model parameters. The proposed formu-

las of relation involve two scaling factors: the normalizing

frequencies which may be related to the critical frequencies

delimiting low- and high-frequency regimes of viscous and

thermal effects. These scaling factors must be set before-

hand, and they simply normalize the identification algorithm,

which means that for various choices the identified sets of

dimensionless parameters will differ merely in how they

render the same (or very similar) values of the model param-

eters. In practice, the choice of scaling frequencies may

slightly affect the identification errors, and it will certainly

have an impact on the number of iterations needed by the

minimization algorithm. Nevertheless, the choice of normal-

izing frequencies may be quite arbitrary, within some rea-

sonable limits. It is also suggested that the thermal scaling

frequency should be less than its viscous counterpart. The

purpose for these scaling factors is that the order of the iden-

tified dimensionless parameters should be similar (as a mat-

ter of fact, in cases when they vary significantly, another

choice of scaling frequencies should be tried). Moreover, the

initial values for all dimensionless parameters may be simply

set to 1 (thus, the corresponding initial values of model pa-

rameters will depend only on the two scaling frequencies).

This is an important feature of the identification procedure:

with a simple choice of initial values the iterative minimiza-

tion should lead to the global minimum. Such approach

should improve the robustness of the methodology which,

however, depends most of all on the quality of experimental

data. Therefore, the parametric identification should be

effectuated with respect to many experimentally determined

curves of acoustic impedance measured for the same porous

material. This may be achieved by testing a few samples of

various thickness in several configurations, namely, in the

standard one—when a sample is set directly to the rigid ter-

mination in an impedance tube—and in double-layered

arrangements with air gaps of known thickness between the

sample and the rigid termination. The methodology was

tested on data obtained from one numerical experiment as

well as data from the measurements of two samples (of vari-

ous thicknesses) of high-porosity alumina foam, and a sam-

ple of polyurethane foam, carried out in an impedance tube.

The tests essentially validated the method, however, they

also revealed a moderate accuracy (reliability) of identifica-

tion because of a rather limited sensitivity of the impedance

curves to some not very large variations of some of the

model parameters (see also Ouisse et al.42).
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APPENDIX: GRADIENT OF THE OBJECTIVE
FUNCTION

Here, the analytical formulas will be given for the gradient

of the objective function defined with respect to one measure-

ment configuration [i.e., m ¼ 1 in formula (26)], when a po-

rous sample is set directly on the rigid wall (i.e., for ‘1 ¼ 0

and ‘2 ¼ ‘). In this case, the gradient components with respect

to the (real-valued) parameters pn (n ¼ 0; 1; …; 5) are

@F pð Þ
@pn

¼2
X
x

ReZ x; pð Þ�ReZ exp xð Þ
� �

Re
@Z x; pð Þ
@pn

þ2
X
x

ImZ x; pð Þ� ImZ exp xð Þ
� �

Im
@Z x; pð Þ
@pn

;

where the components of the corresponding gradient of the

surface acoustic impedance,

Z x; pð Þ ¼ �
iZf

p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a x; p1; p2; p4ð Þ
b a0 x; p3; p5ð Þ
� �

s

� cot
x‘
cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � � �ð Þb � � �ð Þ

q� �
;

are computed as follows:

@Z

@p0

¼ � Z

p0

;
@Z

@p1

¼ @Z

@a
@a
@p1

¼ @Z

@a
;

@Z

@p2

¼ @Z

@a
@a
@p2

;
@Z

@p3

¼ @Z

@b
@b
@a0

@a0

@p3

;

@Z

@p4

¼ @Z

@a
@a
@p4

;
@Z

@p5

¼ @Z

@b
@b
@a0

@a0

@p5

;

where

@Z

@a
¼ iZf

2p0

1ffiffiffiffiffiffi
ab
p a

sin2 að Þ
� cot að Þ

	 

; a ¼ x‘

cf

ffiffiffiffiffiffi
ab

p
;

@Z

@b
¼ iZf

2p0

ffiffiffiffiffi
a

b3

r
a

sin2 að Þ
þ cot að Þ

	 

;

@b
@a0
¼ cf � 1

ða0Þ2
;

@a
@p2

¼ x�
ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
x�

p4 þ 1

r
;

@a
@p4

¼ p2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
x�

p4 þ 1

r ;

@a0

@p3

¼ x0�
ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ix
x0�

p5 þ 1

r
;

@a0

@p5

¼ p3

2
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ix
x0�
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