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Abstract. This paper concerns theoretical and experimental investigations of vibrations 

of an autoparametric system composed of two beams with rectangular cross sections and 

essentially different flexibilities in two orthogonal directions. Differential equations of 

motion and associated boundary conditions based on the Hamilton principle of least 

action, are derived to third order approximation. Experimental tests of the system 

response, under random and harmonic excitations for the 1:4 internal resonance 

condition are performed, and then the most important vibration modes are extracted. It is 

shown that certain modes in the stiff and flexible directions of both beams may interact, 

and, intuitively unexpected out-of-plane motion may also appear.  

1 INTRODUCTION 

Beam structures are common in mechanical and civil engineering
1,2

. Linear and nonlinear 

models of a single beam are studied extensively in many papers. Large vibrations of non-

planar motion of inextensional beams are considered in
3
. Equation of motions with nonlinear 

curvatures and nonlinear inertia terms are derived systematically to third order approximation, 

taking into account bending about two principal axes and torsion of the beam. Reduction of 

the model into two differential equations is carried out by expressing twisting of the beam 

versus its bending in two directions. The response of such a nonlinear model when excited 

harmonically by an external, distributed, force is presented in
4
. Paper

5
 presents the influence 

of parametric excitation on a single vertical beam response generated in a perpendicular plane 
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to that of the excitation. It is shown that a few resonances can be excited simultaneously and 

that a weaker type of coupling can modify that of stronger coupling to a significant extent. 

Non-planar motion of a metal cantilever beam exited by vertical harmonic motion of the 

support is also presented in
6
. Bifurcation analysis shows different possible vibrations of the 

beam and five branches of the dynamic solution. Periodic, quasi-periodic and chaotic motions 

are found near the main parametric resonance. Because of a well separated torsional 

frequency, the influence of torsional inertia is neglected in the model. A study of nonlinear 

vibrations of metallic cantilever beams subjected to transverse harmonic excitations is given 

in
7
. Experimental and theoretical results are presented. The transfer of energy between widely 

spaced modes via modulation, both in the presence and absence of a one-to-one internal 

resonance is shown. Reduced-order models using the Galerkin discretisation are also 

developed to predict experimentally observed motions.  

More complicated situation may appear when instead of a single beam, a set of coupled 

beams is to be analysed. Due to internal coupling caused by nonlinear terms resulting from 

nonlinear geometry and inertia, autoparametric vibrations may appear
8
. In such a case, one 

subsystem becomes a source of excitation to the other, and under some conditions this causes 

an increase of a vibration amplitude and, moreover an energy transfer between different 

vibration modes may take place
9
. This kind of coupling appears in, so called, “L” shaped 

beam structures. In-plane motion analysis of such coupled beams is presented in
10

. Derivation 

of the equations of motion and dynamical boundary condition are shown there for a structure 

flexible in one plane and stiff in the orthogonal direction. Analytical solutions are found when 

the strongest coupling takes place, i.e. in the neighbourhood of the principal parametric 

resonance and for a 2:1 internal resonance. Primary resonance of the first and the second 

mode, and prediction of the Hopf bifurcation, are determined analytically. Experimental tests 

of nonlinear motion in a coupled beam structure with quadratic nonlinearities are discussed 

in
11

 and
12

. Periodic, quasi-periodic, and chaotic responses, predicted by theory have been 

confirmed. It has been shown that under a 2:1 internal resonance a very small excitation can 

lead to chaotic response of the structure.  

Another type of “L” shaped metal beam structure is explored in
13-18

. The difference 

between this and the models just summarised is that the beams are coupled in such a way that 

their stiffnesses are essentially different in two orthogonal directions (see Fig.1). The effect of 

non-linear coupling between bending modes of vibration is investigated theoretically and 

experimentally in
13,14

. The non-linear forced vibration responses show jumps at entry and 

exits frequencies. Small non-linear interactions have significant effect under the 2:1 internal 

resonance condition. Four mode interaction exhibits large amplitudes of indirectly excited 

modes and saturation of the directly excited mode. Planar and non-planar motions of the 

vertical beam for two simultaneous internal resonance conditions are presented in
15

. The 

combination and internal resonances give complicated responses and intermodal energy 

exchange effects for small changes in external and internal tuning. Differential equations of 

motion have been derived taking into account bending of the horizontal beam, and bending/ 

torsion of the vertical beam. Paper
16

 shows that violent non-synchronous torsion and bending 



M. Bochenski, J. Warminski, M. P. Cartmell 

 

3 

vibrations occur as a result of the existence of quadratic non-linear coupling terms and 

internal resonance effects caused by strong four-mode interactions.  

In spite of extensive investigations of the “L” shaped beam structure, there are no 

literature analyses, to the authors’ knowledge, that take interaction between torsion and 

bending in both of the coupled beams into account. The development of the mathematical 

modelling is particularly important if the structure is made of composite material. 

Additional interactions can be observed because of a natural closeness of the torsional 

and bending modes frequencies, which are usually well separated for metallic structures.    

This paper gives an extension of the analysis of the coupled beam structure presented 

in papers
13-18

. The systematic derivation of the differential equations of motions and 

associated boundary conditions to third order approximation are given in the first part. 

Then, the results of preliminary experimental tests are presented which show the modal 

interactions and their influence on the structure’s response phenomena. 

2 MODEL OF THE STRUCTURE 

The structure considered in this paper consists of two thin beams made of glass-epoxy 

composite with fibres oriented as follows: 0/90/45/-45/45/90/0 (Fig.1). Both beams are of 

rectangular cross-section and are fixed in such a way that their flexibilities are essentially 

different in the horizontal and vertical directions
18

. They are clamped together at point C, 

while the horizontal (primary) beam is fixed at the support B and can be excited by the shaker 

in the Y1 direction. A lumped mass A attached at the top of the vertical (secondary) beam 

allows for tuning of the structure for the required dynamical conditions.  

The deformed structure and the assumed coordinate systems are presented in Fig.2. The 

axes X1,Y1,Z1 are assumed to be inertial with their origin at point B, while the set X2,Y2,Z2 is 

attached to the centre of the cross section at point C and overlaps the principal axes of the 

beam cross section. Sets 
1 1 1, ,ξ η ζ  and 

2 2 2, ,ξ η ζ  are the principal axes of the beam cross 

section at arbitrary positions s1 and s2 for the primary and secondary beams, respectively. 

 

 

Figure 1. Model of the structure 
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Figure 2. Deflected beam structure 

The components 
1 1( , )u s t , 

1 1( , )v s t , 
1 1( , )w s t  and 

2 2( , )u s t , 
2 2( , )v s t , 

2 2( , )w s t  denote the 

elastic displacement of the cross-section centroids of the primary and secondary beams (points 

O1 and O2), while 1 1( , )s tφ , ( )1 1 ,s tψ , ( )1 1 ,s tθ  and 2 2( , )s tφ , ( )2 2 ,s tψ , ( )2 2 ,s tθ  represent the 

rotations expressed by Euler angles.     

3 EQUATIONS OF MOTION 

The equations of free vibration of the structure given in Fig.1 are derived by applying 

Hamilton’s principle of least action, 

 ( )
2

1

1 1 1 2 2 2 0

t

C C A A

t

T V F T V F T V T V dtδ − + + − + + − + − =∫  (1) 

where 
1T , 

1V , 
1F , 

2T , 
2V , 

2F  denote the kinetic and potential energies and the constraint 

equations of the primary and the secondary beams, and 
CT , 

CV , 
AT , 

AV , the kinetic and 

potential energies of the masses C and A, respectively. 

By introducing the notation 
1

1 1 1 1 1

0

l

T V F h ds− + = ∫ , 
2

2 2 2 2 2

0

l

T V F h ds− + = ∫  equation (1) can 

then rewritten in the form, 

 
2 1 2

1

1 1 2 2

0 0

0

t l l

c c A A

t

h ds h ds T V T V dtδ δ
 

+ + − + − =  
 
∫ ∫ ∫  (2) 

The kinetic energy of the primary beam results from translational and rotational motions of 

the element shown in Fig.2a 

a) b) 
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 ( )( )
1

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1

0

1

2

l

x y zT A V V V I I I dsξ ξ η η ζ ζρ ω ω ω= + + + + +∫  (3) 

where: 
1ρ , A1 denote density and cross-sectional area of the primary beam, 

1Iξ ,  
1Iη , 

1Iζ  

are the principal mass moments of inertia of the beam per unit length. Velocity components of 

the translational motion take the form, 

 
1 1xV u= & , 

1 1yV v= & , 
1 1zV w= &  (4) 

where the dot denotes the time derivative. Assuming inextensionality of the beam, and no 

shear deformation, we can express 
1θ  and 

1ψ  versus deformations 
1u , 

1v , 
1w  and then angular 

velocities can be determined from the rotation of the cross section which, after expanding of 

the trigonometric functions in power series, gives
3
,   

 
1 1 1 1v wξω φ ′ ′= +& &   

 
1

2 2

1 1 1 1 1 1 1

1 1

2 2
v w w w wηω φ φ′ ′ ′ ′ ′= − + −& & & &  (5) 

1

2 2

1 1 1 1 1 1 1 1 1 1

1 1

2 2
v v v v w v w wζω φ φ′ ′ ′ ′ ′ ′ ′ ′= − + + +& & & & &   

where the prime denotes the space derivative. 

Taking into account the geometry of the beam of Fig.2, we can assume that the angular 

velocity with respect to the 
1η  axis, and the mass moment of inertia relative to the 

1ζ  axis, are 

relatively small, therefore,  

1

2 0ηω ≅ , 
1

0Iζ ≅  . 

Thus we keep only that part of the kinetic energy that corresponds to rotation with respect to 

the 1ξ  axis: 

 
1 1 1 1v wξω φ ′ ′= +& &  (6) 

 

Potential energy is determined in bending about the two principal axes 1η , 1ζ , and torsion 

about axis 1ξ ,  

 ( )
1

1 1 1 1 1 1

2 2 2

1 1

0

1

2

l

V D D D dsξ ξ η η ζ ζρ ρ ρ= + +∫  (7) 

where: 
1 11D G Jξ ξ=  is the torsional stiffness,

1 1 1 11 1,D E J D E Jη η ζ ζ= =  are flexural 

stiffnesess and 
1ξρ , 

1ηρ , 
1ηρ  are the curvatures, determined from the angular velocities by 

using Kirchhoff’s kinetic analogue
6
: 
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1 1 1 1w vξρ φ′ ′ ′′= +  (8) 

1

2 2

1 1 1 1 1 1 1

1 1

2 2
v w w w wηρ φ φ′′ ′′ ′′ ′ ′′= − + −

 

1

2 2

1 1 1 1 1 1 1 1 1 1

1 1

2 2
v v v v w v w wζρ φ φ′′ ′′ ′ ′′ ′′ ′ ′ ′′= − + + +  

The constraint equation for the primary beam has the form, 

 ( )( )( )
1

2 2 2

1 1 1 1 1 1

0

1 1

l

F u v w dsλ ′ ′ ′= − + + +∫  (9) 

 

where 1λ  is the Lagrange multiplier.  

The kinetic energy of the secondary beam is calculated by taking into account the velocity 2OV
r

 

of the centre of the cross-section 2O , using the radius vector 2r
r

, related to the translational 

and angular motions of set 2 2 2X Y Z  which has its origin at point C, together with the relative 

velocity rV
r

. It can be written in vector form, 

 2 2 2O C C rV V r Vω= + × +
r r rr r

 (10) 

Applying (10) and then projecting the velocity components onto the 2 2 2X Y Z  coordinate 

set we get the kinetic energy of the secondary beam,  

 

 ( )( )
2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

0

1

2

l

x y zT A V V V I I I dsξ ξ η η ζ ζρ ω ω ω= + + + + +∫  (11) 

Absolute velocity components projected onto the moving frame take the forms, 

( ) ( )

( )

2

2 2

2 1 1 2 1 1 1 2 1 1 1 1 1 1

1 1 1 1

1 1
1

2 2
x C C C C C C C C C C C

C C C C

V u w v v w w v w v v

u v w

φ φ φ φ

φ

 
′ ′ ′ ′= + − + − + + − − 

 

′ ′+ − −

&& & & & & &

&

  

( )( ) ( ) ( )

( )

2 2 2 2 1 1 1 2 1 1 1 1 1 1 1

2 2

1 1 1 1 1 1 1

1 1
1

2 2

y C C C C C C C C C C

C C C C C C C

V v s u v w w v w u v w

v v w w w

φ φ φ

φ φ

′ ′ ′ ′ ′ ′= + + + + − + −

 
′ ′ ′+ − − + − − 

 

&& & & & &

& &

 (12) 
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( )( )

( )

2

2 2

2 2 2 1 1 1 2 1 1 1 1 1 1 1

2 2

2 1 1 1 1 1 1 1 1 1 1

1 1

2 2

1 1
1

2 2

z C C C C C C C C C C

C C C C C C C C C C

V w s u v w s v v v w v w

v v w v v w w u v w

φ φ

φ

 
′ ′ ′ ′ ′ ′ ′ ′= − + + + − − 

 

 
′ ′ ′ ′ ′ ′+ − + + + − − 

 

& & & & & &

& & & & &

  

And, making assumptions similar to those of the primary beam, 

2 2

2 0 0Iη ζω ≅ ≅  

we get,  

 
2 2 2 2v wξω φ ′ ′= +& &  (13) 

The potential energy of the secondary beam is expressed in the second local coordinate set, 

denoted by index 2, and has an equivalent form to that of the primary beam,  

 ( )
2

2 2 2 2 2 2

2 2 2

2 2

0

1

2

l

V D D D dsξ ξ η η ζ ζρ ρ ρ= + +∫  (14) 

with torsional and flexural stiffnesses,   

2 2 2 2 2 22 2 2, ,D G J D E J D E Jξ ξ η η ζ ζ= = =  

and curvatures,  

 

2

2

2

2 2 2

2 2

2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2

1 1

2 2

1 1

2 2

w v

v w w w w

v v v v w v w w

ξ

η

ζ

ρ φ

ρ φ φ

ρ φ φ

′ ′ ′′= +

′′ ′′ ′′ ′ ′′= − + −

′′ ′′ ′ ′′ ′′ ′ ′ ′′= − + + +

 (15) 

The constraint equation for the secondary beam is defined as, 

 ( )( )( )
2

2 2 2

2 2 2 2 2 2

0

1 1

l

F u v w dsλ ′ ′ ′= − + + +∫  (16) 

To obtain the differential equations of motion it is necessary to determine the variations of the 

functions h1 and h2 , AL , and CL , 

13
1

1

1

i

i i

h
h p

p
δ δ

=

∂
=

∂
∑ , { }1 1 1 1 1 1 1 1 1 1 1 1 1

, , , , , , , , , , , ,p col u v w v u v w v wφ φ φ λ′ ′ ′ ′ ′ ′′ ′′= && & & &  (17) 
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25
2

2

1

i

i i

h
h q

q
δ δ

=

∂
=

∂
∑ , 

{
}

2, 2 2 2 2 2 2 2 2 2 2 2 2 2 1

2 1 1 1 1 1 1 1 1 1

, , , , , , , , , , , , , ,

, , , , , , , , ,C C C C C C C C C

q col u v w u v w v u v w v w

u v w v w v w

φ φ φ

λ φ φ

′ ′ ′ ′ ′ ′′ ′′=

′ ′ ′ ′

&& & & &

&& & & & &

 (18) 

10

1

C

C Ci

i Ci

L
L p

p
δ δ

=

∂
=

∂
∑ , { }1 1 1 1 1 1 1 1 1 1

, , , , , , , , ,
C

p col v u v w v w v wφ φ ′ ′ ′ ′= && & & & &  (19) 

21

1

A

A Ai

i Ai

L
L q

q
δ δ

=

∂
=

∂
∑ , 

{

}
2 2 2 2 2 2 2 2 2 2 2

2 1 1 1 1 1 1 1 1 1

, , , , , , , , , , ,

, , , , , , , , ,

A

C C C C C C C C C

q col u v w u v w v w v

w u v w v w v w

φ φ

φ φ

′ ′ ′=

′ ′ ′ ′ ′

&& & & & &

&& & & & &
 (20) 

Integrating the variations by parts with respect to time between limits t1 and t2, and 

remembering that variations at the time instances t1 and t2 are equal to zero we get, 

2 1

1

2 2 2 3 2 3

1 1 1 1 1 1

1 12

1 1 1 1 1 1 1 1 1 10

2 2 3 2 2

1 1 1 1 1 1

1 12

1 1 1 1 1 11 1 1

t l

t

h h h h h h
u v

u t u s v t v s t v s v s

h h h h h h h
w

w t w s sw s t

δ δ

δ δφ
φ φφ

    ∂ ∂ ∂ ∂ ∂ ∂
− − + − + − +    

′ ′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

  ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − − + + − − +  

′ ′′′∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂   

∫ ∫
& & &

&&

2

1

1 1

1

2 2 2 3 2 3

2 2 2 2 2 2 2 2

2 22

2 2 2 2 2 2 2 2 2 2 2 20

2 2 3 2

2 2 2 2 2 2

22

2 2 2 2 22 2 2

l

ds

h h h h h h h h
u v

u u t u s v v t v s t v s v s

h h h h h h
w

w w t w s w s t

δλ
λ

δ δ

δ
φ φ




∂ 

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − − + − + − +   

′ ′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂ ∂ ∂
+ − − + + − − 

′ ′′∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ 

∫
& & &

&&

2

2 2

2 2 2

2 2 2

0
h h

ds dt
s

δφ δλ
φ λ

 ∂ ∂ 
+ =  

′∂ ∂ ∂    
 (21) 

Next integrating by parts with respect to the space coordinates s1 and s2, and then collecting 

terms for proper variations up to the third order, we get successive differential equations of 

motions: 

• for the primary beam  

variation 
1uδ  

1 1 1 1 1 0A u uρ λ ′′− + =&&   (22) 

variation 
1vδ  
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( ) ( )( )

( )( )
( ) ( )

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2

2 4 2

1 4

IV

IV IV

IV IV

A v v D w v w w w v w v w v w

D w v w v v w

D v v w v w v v

ξ

η

ζ

ρ λ φ φ φ

φ φ φ φ φ φ φ φ φ

φ φ φ φ

′′ ′′′ ′ ′ ′′′ ′ ′ ′′ ′′ ′′′ ′ ′′ ′′ ′′− + + − − − + − + +

′′′ ′ ′′′ ′ ′′ ′ ′′ ′′ ′′+ − + − − + +

′ ′ ′ ′′′ ′ ′+ − − + − + + −

&&

( ) ( )(
( ) )

( ) ( )( )

1 1 1 1 1 1 1

2 2 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 3

2 2

2 2 2 2 0

v w w v v w

v v w w

I w w w v w v v w w w v v w w

φ

φ φ φ φ

φ φ φ φ

′′ ′′′ ′ ′ ′′ ′ ′′− + +

′′ ′ ′′ ′′ ′′ ′′ ′′+ − − + −

′ ′ ′ ′ ′ ′′ ′ ′′ ′ ′′ ′′ ′ ′ ′ ′ ′′+ + + + + + + + + =& && && && & & && & & && & & &

 (23) 

variation 
1wδ  

( )( )

( ) ( ) ( )( )
( ) ( )

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2

1 1 1 1 1 1 1 1 1 1 1 1 1

2

1 2 4 2 2

2 3 4

IV IV

IV IV

A w w D v w v v w v

D w w v v w w w w w v

D v v w w v w v v w

ξ

η

ζ

ρ λ φ φ

φ φ φ φ φ φ φ φ φ

φ φ φ

′′ ′′′ ′ ′ ′′ ′′ ′′ ′′ ′′− + + + + +

′ ′′′ ′ ′′′ ′ ′ ′′ ′′ ′ ′′ ′′ ′′ ′′+ − − + + + + − + − + +

′ ′ ′′′ ′ ′ ′′ ′ ′′+ − + − − + + −

&&

( )( )
( )

2 2

1 1 1 1 1 1 1 1 1 1

2

1 1 1 1 1 1 1 1 1 1

2 2

2 0

w w v v

I v v w v w v v

φ φ φ φ φ φ

φ φ

′′′ ′ ′′ ′ ′′ ′′ ′′ ′′− + + −

′ ′ ′ ′′ ′′ ′ ′ ′′+ − − − − =& && & & & &

 (24) 

variation 
1δφ  

( ) ( ) ( )

( )

2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1
0

D v w v w D v v w w D v v w w

I w v v w

ξ η ζφ φ φ φ φ

φ

′′′ ′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′+ + + − + + + − −

′ ′ ′ ′+ − − − =&& && & &

 (25) 

variation 
1δλ  

( )( )2 2 2

1 1 11 1 0u v w ′ ′ ′− + + + =
 

   (26) 

• for the secondary beam 

variation 
2uδ  

( ) ( )

( ) ( ) ( )
( )

2 2 2 2 2 2

2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1

2

2 1 1 1 1 1 1 2 1 1 1 2 1 1 1

1 1 1 1 1

1 1
1 2 2

2 2

2 2

C C C C C C C C C C C C C

C C C C C C C C C C C C

C C C C C

A u v v s v v w v w u v

v v v w v w w v w v v w

u v w w

ρ φ φ φ φ φ

φ φ φ

φ

  ′ ′ ′ ′ ′ ′ ′− − − − + + + + + + 
 

′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + + + +

′ ′+ + −

& & &&& && & & & & &

&& && & & && && && & &

&& && )1 2 2 0C uφ λ ′′+ =

(27) 
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variation 
2vδ  

( ) ( )

( ) ( ) ( ) ( ))

2 2 2 2

2 2 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1

2 2

2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2

1 1
1

2 2

2

C C C C C C C C C C C C C

C C C C C C C C C C C C C C

A v w w s v w v w u v w

v w w w u v w u w v v v w

v D w vξ

ρ φ φ φ φ φ

φ φ φ φ

λ φ

  
′ ′ ′ ′ ′ ′ ′− − − − − + − + − + 

 

′ ′ ′ ′ ′ ′ ′ ′+ + + − + + − + +

′′ ′′′ ′+ + − −

&& &&&& && & & && &&

& && && & & && &&

( ) ( )( )

( )( )
( ) ( ) ( ) ( )(

2

2 2 2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2

2 4 2

1 4 2 3

IV

IV IV

IV IV

w w w v w v w v w

D w v w v v w

D v v w v w v v v w w v v w

η

ζ

φ φ

φ φ φ φ φ φ φ φ φ

φ φ φ φ φ

′ ′′′ ′ ′ ′′ ′′ ′′′ ′ ′′ ′′ ′′− + − + +

′′′ ′ ′′′ ′ ′′ ′ ′′ ′′ ′′+ − + − − + +

′ ′ ′ ′′′ ′ ′ ′′ ′′′ ′ ′ ′′ ′ ′′+ − − + − + + − − + +

+ ( ) )
( ) ( )( )

2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 0

v v w w

I w w w v w v v w w w v v w w

φ φ φ φ

φ φ φ φ

′′ ′ ′′ ′′ ′′ ′′ ′′− − + −

′ ′ ′ ′ ′ ′′ ′ ′′ ′ ′′ ′′ ′ ′ ′ ′ ′′+ + + + + + + + + =& && && && & & && & & && & & &

 (28) 

variation 
2wδ  

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1

2 2

2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1
1

2 2

2 2 2

1
1

2

C C C C C C C C C C C C C

C C C C C C C C C C C C C C

C

A w s v v w v w v v w u v w

v w v w v w u v v w w v v w w

u v

ρ φ φ φ

φ

   
′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − + + + + + + +   
  

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ − + + + + − −

′− −

&& && && & & && &&

&& && & & & & & & & & &

&& ( )( )

( ) ( ) ( )( )
( )

2 2 2

1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

1
2

2

1 2 4 2 2

C C C C C C

IV IV

IV IV

w v v w w w D v w v v w v

D w w v v w w w w w v

D v v w w

ξ

η

ζ

λ φ φ

φ φ φ φ φ φ φ φ φ

φ φ

 
′ ′ ′ ′′ ′′′ ′ ′ ′′ ′′ ′′ ′′ ′′− − − + + + + +  

  

′ ′′′ ′ ′′′ ′ ′ ′′ ′′ ′ ′′ ′′ ′′ ′′+ − − + + + + − + − + +

′ ′+ − + −

&& &&

( ) ( )( )
( )

2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 2 2 2

2 3 4 2 2

2 0

v w v v w w w v v

I v v w v w v v

φ φ φ φ φ φ φ

φ φ

′′′ ′ ′ ′′ ′ ′′ ′′′ ′ ′′ ′ ′′ ′′ ′′ ′′− + + − − + + −

′ ′ ′ ′′ ′′ ′ ′ ′′+ − − − − =& && & & & &

 (29) 

variation 
2δφ  

( ) ( ) ( )

( )

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2
0

D v w v w D v v w w D v v w w

I w v v w

ξ η ζφ φ φ φ φ

φ

′′′ ′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′+ + + − + + + − −

′ ′ ′ ′+ − − − =&& && & &

 (30) 

variation 
2δλ  
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 ( )( )2 2 2

2 2 21 1 0u v w ′ ′ ′− + + + =
 

 (31) 

The components obtained from integration by parts for the limits 
1 0s = , 

1 1s l=  and 
2 0s = , 

2 2s l= , and then grouped for the appropriate variations, give the associated boundary 

conditions: 

  

• at point B,  
1 0s =  

 
1 0Bu = , 

1 0Bv = , 
1 0Bw = , 

1 0Bφ = , 
1 0Bv′ = , 

1 0Bw′ =  (32) 

 

• at point C, 
1 1s l= , 

2 0s =  

variation 
1Cuδ  

 ( ) [ ] [ ]1 1 2 2 2 2 1 2 1 1 2 1 2 11 0C A C C C C A A C Cu A l w u l v m u m w u l v HOTλ ρ′ ′ ′− + − + − − − + − + =&& && && && && && &&  (33) 

 

variation 
1Cvδ  

( ) [ ] [ ]1 1 1 1 2 2 2 2 1 1 1 1
0

C C A C C C C A C A A C
D v v A l u v m g m v m g m u v HOTζ λ ρ φ′′′ ′− − + − − − − + + =&& && && && &&  (34) 

variation 
1Cwδ  

( )1 1 1 1 2 2 2 2 1 2 1 1 2 1 2 1
0

C C A C C C C A A C C
D w w A l v w l m w m v w l HOTη λ ρ φ φ   ′′′ ′− − + + − − + + + =   

&& &&&& && && && &&  (35) 

 

variation 
1Cδφ  

 
( ) ( ) ( )

( )

2 2

1 1 2 2 2 2 2 1 2 1 1 2 2 1 2 1

2 2 1 0

C A C C C C A A C C

A A C

D A l l v w l I m l v w l

m g v l HOT

ξ ξφ ρ φ φ φ

φ

   ′− − + + − − + +   

+ + + =

&& && &&&& && && &&
 (36) 

 

variation 
1Cvδ ′  

 
( ) ( )

( ) ( )

2

1 1 2 2 2 2 2 1 2 1 1

2

2 2 1 2 1 2 2 1 0

C A C C C C

A A C C A A C

D v A l l w u l v I v

m l w u l v m g w l v HOT

ζ ζρ′′ ′ ′ − − − + + − 

′ ′ − − + + − − + = 

&& && && &&

&& && &&

 (37) 

 

variation 
1Cwδ ′  

 ( )1 1 1
0

C C C
D w I w HOTη η

′′ ′− − + =&&  (38) 
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• at point A, 
2 2s l=  

variation 
2 Auδ  

 ( ) [ ]2 2 2 2 11 0A A A A Cu l m g m u v HOTλ ′− + − − + + =&& &&  (39) 

variation 
2 Avδ  

 ( )2 2 2 2 1 2 1 2 1
0

A A A C A A C C
D v v m g m v w l HOTζ λ φ φ ′′′ ′− − − + + + = 

&&&& &&  (40) 

variation 
2 Awδ   

 ( ) [ ]2 2 2 2 1 2 1 2 1
0

A A A C A A C C
D w w m gv m w u l v HOTη λ′′′ ′ ′ ′− − − + − + =&& && &&  (41) 

variation 
2 Aδφ  

 ( )2 2 2
0

A A A
D I HOTξ ξφ φ′− − + =&&  (42) 

variation 
2 Avδ ′   

 ( )2 2 2
0

A A A
D v I v HOTζ ζ

′′ ′− − + =&&  (43) 

variation 
2 Awδ ′   

 ( )2 2 2
0

A A A
D w I w HOTη η

′′ ′− − + =&&  (44) 

Formulae for boundary conditions are given up to the first order terms while the second and 

third orders are written by the abbreviation HOT, that means higher order terms. Indexes A, B, 

C denote values at proper points. Note that to have consistency in Eqs. (33)-(38) variations of 

the secondary beam at point s2=0 are expressed by variations of the primary beam at s1=l1, by 

using a transformation of the local to the absolute set of coordinates. 

The derived partial differential equations which describe the problem consist of the 

geometrical and inertial nonlinear terms and nonlinear, non-homogenous, dynamical boundary 

conditions. To solve this set of nonlinear equations of motion, and the nonlinear boundary 

conditions, an approximate solution method has to be applied. It requires an appropriate 

assumption for the admissible vibration modes which will then satisfy the boundary 

conditions to the required perturbation order accuracy. This will be completed in further 

analytical investigations of this problem, to be undertaken in the very near future. However, to 

make proper assumptions for this further work on an approximate analytical approach 

experimental and numerical (FEA) tests have been undertaken and these are presented in the 

next section. 



M. Bochenski, J. Warminski, M. P. Cartmell 

 

13 

4 EXPERIMENT 

The experimental setup used for the testing work is composed of a high end proprietary 

modal analysis system, spectral acquisition software, and an electrically matched shaker with 

feedback loop control of the excitation level. The signals are measured by three small, low 

mass, piezo-sensors and a piezo-sensor is used for monitoring the excitation. The arrows in 

Fig. 1 indicate the orientations of the sensors used in the experimental tests.  

Preliminary experimental investigations consisted of tuning the structure for chosen 

bending and torsional natural frequencies of the system. The frequencies are determined by 

modal analysis of the system response activated by an impact. By modification of lumped 

masses A and C and the length of the primary beam, the system has been tuned for a 1:4 ratio 

of the first bending frequency of the primary beam ( )( )1
3.61

b I
Hzω =  and the first bending 

frequency of the secondary beam ( )( )1
14.45

b II
Hzω = . The torsional frequency of the primary 

beam, when the whole structure is fixed, has also been measured ( )( )1
~ 4.9

t I
Hzω = . The 

parameters of the tuned structure are listed in Table 1. 

 

length of horizontal beam 236 mm 

length of vertical beam 201 mm 

mass A value 15.3 gr 

mass C value 38.0 gr 

Table 1. Parameters for structure after tuning 1:4 

After the tuning procedure, the whole structure is mounted on the shaker and then excited by a 

random excitation over the band from 0 to 40 Hz. This test enables the resonant responses of 

the system to be found. Figures 3 and 4 show, respectively, the frequency spectra of the 

system responses obtained from sensors No.1 (Z direction) and No.3 (Y direction). 
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Figure 3. Spectrum of the response measured by sensor No. 1 
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Figure 4. Spectrum of the response measured by sensor No. 3 

The highest peaks in Fig.3 correspond to the resonant frequencies of the system, which in a 

linear system are equal to the natural frequencies. Individual peaks, in turn, correspond to the 

first bending frequency ( )1
3.61

b I
Hzω = , the first torsional frequency ( )1

4.9
t I

Hzω = , and the 

second free bending frequency ( )2
15.50

b I
Hzω = , of the primary beam. Because of the 

positioning of the sensor, Fig.4 mainly shows the dynamics of the primary beam. The 

closeness of the torsion and bending frequencies is a typical feature of such a structure when 

made of composite material. For geometrically equivalent aluminium or steel beams, the 

torsion natural frequency would tend to be remote from the bending frequencies.  

The structure has been also modelled in the ABAQUS finite element package by using 

laminated (layered) shell elements. Results based on linear modal analysis of the FEM model 

and those obtained experimentally are compared in Table 2. 

 

 Physical model FEM model 

Fig. 5a 3.61 Hz 3.78 Hz 

Fig. 5b 4.90 Hz 4.21 Hz 

Fig. 5c 15.50 Hz 16.10 Hz 

Fig. 5d 29.60 Hz 29.25 Hz 

Table 2. Comparison experiment and FEM results. 

Vibration modes which correspond to the frequencies presented in Table 2 are shown in Fig.5. 

For better visualisation the modes of vibrations are plotted together with the undeformed 

structure. The first mode with the lowest frequency value, that is 3.61 Hz (the first peak in 

Fig.3 and Fig.4) is given in Fig.5a, evidently the first bending mode of the primary beam is 

responsible for the dynamics. The vertical beam moves in the vertical plane as a solid body.    

The mode at 4.9 Hz represents torsion of the primary beam (Fig.5b, the second peak in Fig.3) 

while the mode at 15.5 Hz corresponds to the second bending mode of the primary beam 

(Fig.6c and the third peak in Fig.3 and Fig.4). It is worth noting that the three lowest vibration 

modes, which have been separated by linear modal analysis, only exhibit deformations in 

bending and torsion of the primary beam. The secondary beam, which has the same cross-
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section, remains undeformed. An interesting phenomenon has also been observed by studying 

the fourth peak of Fig.3 in detail.    

 

 

Figure 5. Linear modes of  the structure a) the first bending mode of the primary beam, b) the first torsional 

mode of  the primary beam, c) the second bending mode of the primary beam, d) the first bending mode of the 

primary beam in the stiffer direction coupled with bending mode of the secondary beam. 

 

Figure 6. Experimental modal analysis (equivalent to Fig. 5d). 
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For this frequency the bending mode of the vertical beam is excited, and, due to interaction, 

the bending mode of the horizontal beam in the stiff direction is excited too. This out-of-plane 

motion is presented in Fig.5d and is confirmed experimentally in Fig.6. 

In many practical engineering applications, the control of motion of the top mass A plays 

an important role. Therefore, the influence of the internal resonance conditions on trajectories 

at this point is of interest. By imposing harmonic excitations at different frequencies, in 

particular around the resonant areas, the response of the system can be investigated in some 

detail. In this paper we only consider the resonant response around the torsional frequency of 

the primary beam. This resonance has not been taken into account in the literature to date, to 

the authors’ knowledge. To avoid damage to the structure, and to get satisfactory signals, the 

amplitude of excitation has been carefully chosen. Fig.7 shows trajectories of the top mass 

near the torsional resonance of the primary beam. The trajectories are reconstructed by signals 

received from sensors No.1 and 2.  

 

 

 

Figure 7. Trajectories of the top mass.  

During transition through the resonance, differences in the structural response are clearly 

visible. Inside the resonance area, near 4.9 Hz, the major axis of an elliptic trajectory is almost 

parallel to the Z coordinate. Outside this resonance zone the axis rotates in the clockwise 

direction and the trajectory, because of nonlinear interactions with other vibrations modes, 

assumes a more complex shape, reminiscent of a Lissajous figure.  
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5 CONCLUSIONS AND FINAL REMARKS 

The paper deals with preliminary theoretical and well developed experimental studies 

of an autoparametric beam structure with essentially different stiffnesses in two 

orthogonal directions. The systematically derived equations of motion, and the associated 

dynamical boundary conditions, show that nonlinear terms which couple the structure 

may result in many unexpected responses. An experimentally tested composite beam 

structure, tuned for the 1:4 internal resonance condition, exhibits possible vibrations as an 

out-of-plane motion in the stiff direction of the primary beam. In the neighbourhood of 

the torsional resonance, due to nonlinear coupling, additional nonlinear modes are 

involved in the system response, and this is expressed by the complex trajectories that 

have been seen. The experimental work has confirmed the FEA analysis, with generally 

very good agreement. Therefore the results give a promising basis for finding and 

interpreting analytical solutions of the mathematical model, as summarised in section 3. 

This, and further investigation will eventually allow a strategy to be developed for the 

active control of this kind of structure by the application of PZT or SMA elements.  
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