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Abstract

In the paper the substitute acoustic boundary impedance conditions for boundaries with periodic geom-
etry are considered. The complex geometry of boundary is treated as planar one with the equivalent im-
pedance conditions obtained from the process of numerical homogenization. The computer simulations
used the finite element method (FEM) and all analyses took into consideration the sinusoidal acoustic pla-
nar waves. Homogenized boundaries, significantly decreases number of degrees of freedom in acoustic
analysis, what in many cases, is the only way to overcome extremely high hardware requirements [7].

1 Introduction

In the numerical analysis that consider acoustic wave traveling phenomena in finite domain, the boundaries
play the crucial role. The wave reflection, absorption or transmission on boundaries have significant influence
on acoustic pressure distribution, so it is important to apply appropriate boundary impedance conditions. It is
obvious that the absorptive properties of acoustic materials are not only caused by physical properties itself.
The geometry of boundaries plays crucial role in the process of acoustic wave energy dissipation thus the great
notice must be laid on this aspect.

In Fig. (1) the influence of corrugation on absorption properties of acoustic material is shown 1. It is clearly
seen that the corrugation of boundary has changed the characteristics of tested acoustic material even up to 25%
(for the higher frequencies). This phenomena can be explained theoretically and it will be discussed further.

The exact mapping of complex boundaries can result in a great number of additional variables in the model.
In the paper, we show how for the special cases of boundaries (the periodic ones) such situations can be avoided
by the process of boundary homogenization (see Fig. (2)). The introduction of substitute boundary impedance
condition allows us to treat the corrugated boundaries as planar one, but with some restrictions discussed later.

2 Reflection from corrugated surface

2.1 Theory

Let us introduce the scalar function Φ = Φ(t) of an acoustic potential (velocity potential) [3], so

v = −gradΦ, (1)

where t is time and v is vector of the acoustic particle velocity.

1experiment tests were done by using Kundt’s Tube
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Figure 1: The comparison of absorption coefficient distribution between two identical acoustic materials with plane
surface and corrugated surface

Using the function Φ the equilibrium equation for acoustic domain (wave equation) can be written as

∇2Φ =
1
c2

∂2Φ
∂t2

, (2)

where c is the wave speed and ∇2 is the Laplace operator.
The wave equation in finite domain has to be satisfied together with boundary conditions. At the boundary

of two different media the following conditions arises:

1. the stream continuity conditions must be satisfied, thus the velocities of acoustic particles normal to the
boundary have to be identical, so

∂Φ1

∂n
=

∂Φ2

∂n
, (3)

where vector n represents the normal to the acoustic medium at the boundary, Φ1 and Φ2 are the resultant
fields in first and second medium respectively,

2. the acoustic pressure at both boundaries has be equal, thus

ρ1Φ1 = ρ2Φ2, (4)

where ρi is density of i-th fluid.

The level of absorption of acoustic wave energy at boundary can be defined in terms of acoustic impedance
Z, i.e. the ratio of acoustic pressure p and the velocity of acoustic particle v. Thus from the definition, the
acoustic impedance Z, in general form, can be written as

Z = ρ0
∂Φ
∂t

(−gradΦ)−1, (5)

where ρ0 is the density of the fluid and the formula p = ρ0
∂Φ
∂t was used.
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Figure 2: I) The cross sections through a typical acoustic materials: a) pyramid, b) rectangular prism, c) other.
II) The scheme of homogenization idea

2.2 Example

2.2.1 Introduction

The following example has the crucial meaning for the analyses of reflection of acoustic wave from boundary
with periodic geometry. Obviously, all periodic functions can be approximated by trigonometric Fourier series.
Thus if the solution for sinusoidal corrugation is known the solution for any other periodic corrugation can be
obtained by summation of successive terms of Fourier series (the sinusoidal one).

The considered problem is shown in Fig.(3). The acoustic planar wave travels parallel to the y axis in the
direction of positive coordinates. The corrugation of boundary has sinusoidal shape thus it can be described by
the function

y = D cos(hx), (6)

where D is the amplitude and λ = 2π
h is wavelength of corrugation . The homogenized boundary has to guar-

Figure 3: The scheme of the problem

antee that the acoustic pressure field is not changed considerably. That is why we have to use the assumption
which has the fundamental importance. The corrugation has to be “flat”, i.e. the following condition must be
fulfilled

D � 2π

h
. (7)

Such a strong assumption additionally eliminates the possibility of internal reflections (inside the folding) and
makes the analytical solution possible to obtain.

2.2.2 Solution

The incident wave can be described by the following formula

Φ′1 = |Φ′1| exp[−i(k1y + ωt)], (8)
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where ω is the frequency [ rad
s ], k1 = ω

c1
is the wave number and i =

√
−1 is the imaginary number. The

reflected wave consists of a series of packages reflected under various angles, dependent on the point in which
the package has reached the boundary. Thus the reflected wave (in first medium) can be obtained from Fourier
series (the following harmonics of corrugation) as

Φ′′1 = A0 exp[−ik1y] + A1 exp[−iq1y] cos(hx) + A2 exp[−iq2y] cos(2hx) + . . . , (9)

where qm =
√

k2 − (mh)2, m = 1, 2, 3, . . . are the wave numbers of the following components, cos(mhz)
represents the phase shift due to differences in way needed to reach the boundary by package and A0, A1, . . . , Am

are amplitudes of the following components. The coefficient A0 represents the principal reflected wave (reflec-
tion from the plane) and the rest Am factors has different physical meaning depending on if their wave numbers
qm are real or imaginary. When the wave number is real (k1 > mh) it means that the package is simply the
common homogenous wave and when the wave number is imaginary (k1 < mh) we obtain inhomogeneous
wave exponentially damped perpendicular to boundary (they can be omitted in computations) [3].

From the information given above the following conclusions of crucial meaning arises:

1. if λc < λw only the principal reflected wave is observed after reflection,

2. if λc > λw except the principal reflected wave other component of expansion in Eqn. (9) are important,

λc and λw are the wavelength of corrugation and wave, respectively.

In further part of the paper, we take into consideration the waves and corrugations that satisfies the conditions
from the first point. Such assumption guarantee that the acoustic pressure field will not change much due to
homogenization of boundaries. It will be shown that in limit, i.e. when λc � λw the corrugation don’t influence
on acoustic pressure field.

By using the assumption from Eqn. (7) the boundary condition described by Eqn. (3) can be rewritten in
the form

∂Φ1

∂y
=

∂Φ2

∂y
, (10)

and for the fist terms of Eqn. (9) we can assume qm ≈ k1. Thus the resultant wave in the first medium is

Φ1 = exp[ik1y] + A0 exp[−ik1y] + A1 exp[−ik1y] cos(hx) + A2 exp[−ik1y] cos(2hx) + . . . , (11)

and its first derivative

∂Φ1

∂y
= ik1{exp[ik1y]−A0 exp[−ik1y]−A1 exp[−ik1y] cos(hx)−A2 exp[−ik1y] cos(2hx)− . . .}. (12)

The resultant wave in the second medium can be written as

Φ2 = B0 exp[ik2y] + B1 exp[iq′1y] cos(hx) + B2 exp[iq′2y] cos(2hx) + . . . , (13)

so using Eqns. (3) and (4) we obtain the following formula

k2ρ1 − k1ρ2

k2ρ1 + k1ρ2
exp[2ik1y] + A0 + A1 cos(hx) + A2 cos(2hx) + . . . = 0, (14)

or in terms of acoustic impedance

−Z2 − Z1

Z2 + Z1
exp[2iky] + A0 + A1 cos(hx) + A2 cos(2hx) + . . . = 0, (15)

where Zi = ρici is an acoustic impedance of i-th medium and b = Z2−Z1
Z2+Z1

is the reflection indicator. Let us
notice, if we put y = 0 the coefficients A1, . . . , Am vanish, while

A0 =
Z2 − Z1

Z2 + Z1
, (16)
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expressing the amplitude of the wave reflected from plane surface.
The Jacobi-Anger expansion of function exp[ia cos(nx)] defined as

exp[ia cos(nx)] = J0(a) + 2
∞∑

m=1

imJm(a) cos(mnx), (17)

where Jm are the Bessel functions of the first kind, shows that the Eqn. (15) will be satisfy as identity if
coefficients Am would be, in general, as follows (k1 = k)

A0 = bJ0(2kD),
Am = 2(−i)mbJm. (18)

If the condition λc < λw is fulfilled we can assume that only the principal reflected wave exists after reflection
with A0 = bJ0(2kD) (Eqn. (18)). The comparison with Eqn. (16) indicates how the corrugation reduces the
amplitude of reflected wave - the multiplier J0(2kD) allows us to estimate the new value of acoustic impedance
for homogenized boundary. Let us noticed that in limit, i.e. when λc � λw (or 2kD → 0+) the corrugation
do not influence on the acoustic pressure field due to the fact that in the limit the multiplier

lim
2kD→0+

J0(2kD) = 1.

2.2.3 Computational example

Let us compute the reflected acoustic wave from the sinusoidal surface and the substitute impedance conditions
for homogenized boundaries (see Fig.(2)). The incident wave has the frequency f = 340Hz thus λw = 100cm
(k = 0.063cm−1). The wavelength of corrugation is λc = 50cm (h = 0.126cm−1) and the amplitude of
corrugation is D = 2cm. The reflection indicator b is assumed to be one.

Solution based on theory from Section 2.2.2 2

According to the previous explanations, because the assumption that λc = 50cm < λw = 100cm is fulfilled,
we can consider that the reflected wave consists of the principal reflected wave only. The reflected wave can be
then expressed as follows (see Eqn. (9))

Φ′′1 = A0 exp[−iky], (19)

where A0 = bJ0(2kD) = 0.984. We would get identical solution if we consider that the boundary is plane,
and that the solution from Eqn. (16) is correct but if the impedance Z2 is substitute by

Z∗2 = Z1
Ap

0J0(2kD) + 1
1−Ap

0J0(2kD)
, (20)

where Ap
0 = Z2−Z1

Z2+Z1
.

FEM solution3

The solution of the acoustic problems in commercial FEM systems is based on generalized form of wave
equation (see Eqn. (2)) (the internal friction is included) [1, 6]

∂p

∂x
+ γ(x, θi)v + ρ(x, θi)v̇ = 0, (21)

where p is the excess pressure in the fluid (the pressure in excess of any static pressure), x is the spatial position
of the fluid particle, v̇ is the fluid particle acceleration, γ is the “volumetric drag” (force per unit volume per
velocity), and θi are i independent field variables such as temperature, humidity of air, or salinity of water

2computations were done in a free scientific software package for numerical computations SciLab 3.1.1
3computations were done in a commercial FE system ABAQUS v6.5
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Figure 4: The results obtained from numerical analyses

on which ρ and γ may depend.The constitutive behavior of the fluid is assumed to be inviscid, linear and
compressible, so

p = −K(x, θi)
∂

∂x
· u, (22)

where K is the bulk modulus of the fluid and u is the fluid particle displacement.
The final FE equations are obtained from the weak form of Eqn. (21) after substituting the boundary terms4,

thus ∫
V

[δp(
1
K

p̈ +
γ

ρK
ṗ) +

1
ρ

∂

∂x
δp · ∂

∂x
p]dV +

∫
Sfr

δp(
γ

ρ

1
c1

p + (
γ

ρ

1
k1

+
1
c1

)ṗ +
1
k1

p̈)dS +∫
Sfi

δp(
1
c1

ṗ +
1
a1

p)dS −
∫

Sfs

δp(n · v̇m)dS −
∫

Sft

δp(n · v̇)dS +∫
Sfrs

δp(
γ

ρ

1
c1

p + (
γ

ρ

1
k1

+
1
c1

)ṗ +
1
k1

p̈− n · v̇m)dS = 0 (23)

where the inverse of 1
k1

and 1
c1

are the spring and dashpot parameters of the acoustic material layer respectively,
vector n represents the inward normal to the acoustic medium at the boundary and v̇m denotes the acceleration
of the structure adjoining with acoustic medium.

The level of the absorption at boundary is controlled by the acoustic impedance of acoustic material. Such
conditions are applied on Sfr surface in the following form (in absence of internal friction γ = 0 )

−n · v = (
1
k1

ṗ +
1
c1

p), (24)

4for detailed information see [6]
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thus the proper choose of k1 and c1 coefficients allows us to obtain the demanded absorption.
The results shown above were obtained under the assumption that the room temperature is considered, so the

following values describing the properties of acoustic medium were established: the density of air ρ = 1.20 kg
m3 ,

and the bulk modulus K = 141.8kN
m2 .

In Fig. (4) the results from FE analyses are presented. The incident wave presents the acoustic pressure
distribution at time instant when the planar wave had not reach the boundary yet. The reflected wave presents
the the acoustic pressure field after reflection (only reflected wave is presented) and the influence of corrugation
is observed. In the last part of Fig. (4) the resultant acoustic pressure distribution is presented to proof that
such field of pressure is possible to obtain by homogenized boundaries (the wave front is almost parallel to
boundary). Similarly to the analytical solution the amplitude of reflected wave was from the range 0.96÷ 0.98.

The substitute impedance conditions for numerical analyses are obtained from Eqn. (24). If we neglect the
out of phase term we will obtain

−n · v =
1
c1

p, (25)

or using above introduced notation

−n · v =
1
Z2

p. (26)

As before if we replace in Egn. (26) Z2 by Z∗2 from Eqn. (20) and in numerical model we substitute the
corrugated boundary by planar one the process of boundary homogenization will be completed.

3 Conclusions

The analytical solution and numerical computations point out that the homogenized boundaries in problems
where the acoustic planar wave traveling is considered can give reasonable results. Beyond any doubt is that
the corrugation of boundary (even very “flat”) can have considerable influence on acoustic pressure distribu-
tion. Figure (5) indicates the case where the acoustic wavelength and the geometry of corrugation have such
dimensions that homogenization would not have sense (the higher order terms of Fourier series (see Egn. (9))
are of great importance). Thus the homogenization can be applied only for special cases of boundaries and

Figure 5: The influence of higher order waves

under the assumption that waves characteristics (i.e. wavelength) are properly fitted to corrugation dimensions.
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